Rad-Tol High-Rel Power Converter Controller for the LHC

S. Uznanski, B. Todd
1. Context & Requirements
2. Project Design Timeline
3. Hardware Evolution
4. Rad-Tol Assurance
5. High-Rel Assurance
6. Production
7. System Validation
8. Deployment
9. Commissioning & Operations
10. Lessons learned & Conclusions
Previous Controller was designed to sustain radiation

2002... tested OK with 60MeV protons
2009... tested in CNGS - weaknesses identified impacting availability
2010... estimated failure rate unacceptable in the future

Rad-Tol High-Rel replacement needed

Design requirements:
- Mechanically & Electrically **plug-in compatible**
- **Transparent** for the **Hardware integration**
- **Transparent** for **Software integration**

Reliability requirements for **all installed units**
- <5 beam dumps per year due to radiation in HL-LHC
- >200Gy Total Dose = 20 years of HL-LHC
- <5 beam dumps due to electrical failure (>1Mh of MTBF/system)
Converter Requirements

<table>
<thead>
<tr>
<th>Typical Use</th>
<th>Current</th>
<th>Voltage</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Dipoles</td>
<td>13000</td>
<td>190</td>
<td>8</td>
</tr>
<tr>
<td>Main Quadrupoles</td>
<td>13000</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Individually Powered Quadrupoles/Dipoles and Inner Triplets</td>
<td>4-6-8000</td>
<td>8</td>
<td>189</td>
</tr>
<tr>
<td>Orbit Correctors</td>
<td>600</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>600A Sextupole correctors</td>
<td>600</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>600A Multipole correctors</td>
<td>600</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>Orbit Correctors</td>
<td>120</td>
<td>10</td>
<td>290</td>
</tr>
<tr>
<td>Orbit Correctors</td>
<td>60</td>
<td>8</td>
<td>752</td>
</tr>
<tr>
<td>Total</td>
<td>>1700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

≈1050 in LHC radiation areas
Scope - Controls Infrastructure

Operation Group Domain

Equipment Group Domain

Operations Software

Equipment Software

Hardware Programmable Logic

Function Generator Controllers (FGClite)

Voltage Source

CMW

Class 51

FGCD

#1

#30
2009 CNGS tests showed
Radiation sensitivity
Design methodology & feasibility studies
Component **selection** & Rad-testing

Proof-of-concept critical functions validated under radiation
Project timeline

2009 Specification
2012 Kick-off
2013 Proof-of-concept
2014 Prototype

Component selection
& Rad-testing

First implementation of
The full functionality
Project timeline

2009 Specification

2012 Kick-off

2013 Proof-of-concept

2014 Prototype

2015 Industrialization

Industrialization: Design for **test** and **reliability**

System Rad-tests at CERN
Project timeline

2009 Specification
2012 Kick-off
2013 Proof-of-concept
2014 Prototype

2015 Industrialization
2016 Production & Validation

14000 electronic boards
Manufactured, tested & assembled
Run-in, burn-in, reliability assessed

hardware and regulation tested in A7 and in the LHC

slawoz.uznanski@cern.ch

Converter Control Electronics
CERN

Converter Control Electronics

slawosz.uznanski@cern.ch

Project timeline

2009 Specification

2012 Kick-off

2013 Proof-of-concept

2014 Prototype

2015 Industrialization

2016 Production & Validation

2017 Deployment ARC

750 systems deployed in the LHC Tunnel
Project timeline

2009 Specification

2012 Kick-off

2013 Proof-of-concept

2014 Prototype

2015 Industrialization

2016 Production & Validation

2017 Deployment ARC

2018 Deployment RR

300 systems in the LHC shielded areas
Annual iteration of hardware to achieve a final implementation:

2013: **Proof-of-concept** validation of **critical functions** under radiation

2014: **Fully functional prototype** embedding all functions needed for the future controller

2015: **Fully industrialized** modular FGClite designed for reliability and testability
The design flow reviewed by ESA & NASA experts

How to approach design of rad-tol electronic system based on COTS components?

Classification of components based on certain criteria

Radiation Characterization Tests of types of components

Lot Acceptance Tests of production batches

Radiation System Validation in the **representative environment**
Electrical reliability was one of the main design requirements for a new system

Long term collaboration established with the **IMA Stuttgart**:

1st: Reliability-driven design of electronic systems

2nd: From design to operations of highly reliable systems

3rd: Feedback from operations and guidelines for future projects

Dedicated Reliability Demonstration by running-in to screen failures

Over **300k dev*h** accumulated system tests before deployment
PCB production & board assembly subcontracted but tests at CERN

CERN designed all electronic boards
CERN purchased & qualified all active semiconductors
PCB & assembly of was subcontracted
CERN tested each board at the reception before assembly in the cassette

Mass Production

Yield Assessment

Board Test & Assembly

14 000 PCBs received at CERN between Sep 2016 & Jan 2017
Boards tested with overall yield of 99.18%
Functional system validation tests with Hardware and Software

Performance measured on **Warm Magnets** (A7) & **Superconducting Magnets** (LHC – TS2/TS3)

- **TS2**: First use from CCC (~30x devices)
- **TS3**: Validation of the first segment (~30x devices)
- **EYETS2016**: Deployment ARCs (750x devices)
- **LS2**: Deployment RR locations (300x devices)
Phase 1: ARC deployment

750 systems deployed in 8 days... then... communication bug was discovered

Problems never observed in laboratory = memory access arbitration issue
Occurrence = once per month in laboratory conditions, once per day in LHC
1 week: to reproduce in lab conditions
1 week: to fix & validate
1 week: to deploy correction in the LHC.

A great Hardware integration was assured... but software interfaces failed

Expert Tools
OP Tools
PM Tools
Arriving to the maturity of software involved equipment & operation groups

4 weeks: Impressive amount of work and great collaboration in the final phases of commissioning

Phase 1 deployment is complete:

Success of electronics project
Radiation tolerance meets requirements
Excellent Electrical Reliability. 2 failures in >5.2M dev*h up to date

Software not as Transparent as thought...

Voltage Source – compatibility assured
Software some assumptions did not hold due to much faster development cycle
Lessons Learned & Conclusions

How to improve the overall process for Phase 2?
The review between groups -> Recommendations for future projects

When designing & producing your system:
Some components go obsolete impacting the rad-qualification -> Buy upfront
Components/PCBs lost & destroyed during production -> Send/manufacture more?
Operational software & diagnostic tools late impacting system integration tests -> Early software development

When Deploying your system:
Hardware Reliability Excellent thanks to detailed modeling & testing...
... Still a bug occurred, but solved during commissioning period -> Did our testing failed?

When commissioning your system:
Integration challenges due to short software life cycle, multiple unidentified users & dynamically changing tools -> new tools to track dependencies & improved communication

Field reliability of both Hardware and Software closely followed
Thank you for your attention!
When specifying your system:

Is your system really needed/can it be simplified? Mitigate risks by relocating equipment outside of radiation area. Use shielding to decrease radiation to an acceptable level.

When specifying your bill-of-materials:

Does your budget allow Rad-Hard/Rad-Tol components? Can you afford COTS qualification/testing?

If your bill-of-materials contains COTS:

Component traceability is critical, obsolescence problems. Assess the spread of radiation response within component lot. Test in representative conditions and configuration.
Reliability demonstration

Failure rate \(\lambda \)

\[MTTF_{Reception} \]

\[MTTF_{Field+R} \]

\[MTTF_{Prediction} \]

\[MTTF_{Goal} \]

\[MTTF_{True} \]

02'2017 09'2017 12'2018

92K dev*h 291K dev*h 1M dev*h

dev*h