Planning and Tracing a 2-year Long Shutdown Period

Petra Schütt, Stephan Reimann, Markus Vossberg
Content

- GSI & FAIR
- Previous Experience
- Timeline
- Challenges
- Current Organization
- Unexpected Incidents
- Conclusion
Petra Schuett: Planning and Tracing a Long Shutdown
FAIR Phase 0

- FAIR experimental program carried out using FAIR detectors, upgraded GSI accelerators for FAIR and CRYRING, first beam time 2018
- Upgrade of existing accelerators for better reliability and better performance
- Construction of FAIR: Civil Construction and Implementation of Accelerators (and Experiments)
- Refurbishment of campus infrastructure → contradictory requirements → resource conflicts (money, personnel)
Standard Shutdown

- Duration: 2 - 10 weeks
- Work on the accelerator system
 - maintenance work
 - repairs
 - insertion of new devices
- Prioritization and planning by machine coordinators
 - Personnel planning by department heads
- Scheduling and tracing by shutdown coordinator
 - operations department
 - MS Project plan
 - logical and chronological dependencies
 - 150 tasks per week
- weekly meeting
 - with shutdown coordinator, all machine coordinators,
 - the security responsible person for each machine and
 - one contact person of each concerned department
Shutdown Coordination

preparation phase

prioritization, scheduling

- shutdown coordinator
- machine coordinators

weekly Coordination Meeting

reporting, adjusting

- shutdown coordinator
- machine coordinators
- safety responsible persons
- involved executing departments
- project responsible persons
Previous Experience of longer shutdowns

- one year of shutdown in 2013
- 1,5 years of shutdown in 2014-2016

Main changes:
- Group shutdown tasks by subprojects, not by department
- Testing periods are helpful not only to test devices and sustain reliability but also to force the departments to meet the deadlines
- Detailed planning of media availability is necessary

Same as for normal shutdowns
- Planning of subprojects and prioritization done in the preparation phase by machine coordinators.
- Expect several 100s of individual tasks in the MSproject plan.
- Discuss weekly a time window of 2-3 weeks, plus implications of incidents for the future
The Major Shutdown Expected in 2015...

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>UNILAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAMTIME</td>
<td>Shutdown (8 months)</td>
<td>BEAMTIME</td>
<td>Shutdown (>1.5 years)</td>
<td>Commissioning</td>
</tr>
<tr>
<td>SIS18/ESR</td>
<td>BEAMTIME</td>
<td></td>
<td>Shutdown (>2.5 years)</td>
<td>Commissioning</td>
</tr>
</tbody>
</table>

- min. 1.5 years of UNILAC shutdown starting 2016
- min. 2.5 years of SIS18/ESR shutdown since 2014
- 4 months of shutdown parallel to operations

- from 2016 at least 1.5 years without any operation
 - operators are delegated to other departments
 - reduced operations department → shutdown department
... mutated to a shutdown 2016/2018

- Including a civil construction project with construction work in the existing accelerator buildings.
- With parallel work on HVAC systems (e.g. air conditioning in the klystron gallery, water cooling systems)
- Additional beamtime 2016
- Retrofitting the FAIR control system to the existing machine.
- Late definition of accelerator related subprojects.

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>UNILAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIS18/ESR</td>
<td>BEAMTIME</td>
<td>BEAMTIME</td>
<td>BEAMTIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LETI</td>
<td>ETAM</td>
<td>BEAMTIME</td>
<td>LETI</td>
<td>ETAM</td>
</tr>
<tr>
<td></td>
<td>Shutdown (8 months)</td>
<td>Shutdown (2 years)</td>
<td>Shutdown (1.5 years)</td>
<td>Shutdown (1.5 years)</td>
<td>BEAMTIME</td>
</tr>
</tbody>
</table>

17.10.2017
Stephan Reimann
Beam Time 2016*

- Major civil construction project was delayed by > 1 year
- Upgrade measures on accelerator had started
- Restricted performance of accelerators
 - Lower end energy of linac
 - lower injection energy of synchrotron
 - Lower end energy of synchrotron, lower intensity
- Personnel effort had to be minimized
- Agreed on “simple and effective” beam time:
 - Reduce to few ion species
 - Several weeks of beam time without new setup
- Lessons learnt
 - Recommissioning after 1.5 years of shutdown
 - Early RF conditioning and device tests

*) see Poster of O. Geithner: “Calculation of the Machine Availability for the Complex Parallel Operation“
Timeline

<table>
<thead>
<tr>
<th>Preparation phase</th>
<th>Nov. 2014</th>
<th>Start of Long Shutdown SIS, ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jun. 2015</td>
<td>Civil Construction (GSI link to FAIR) delayed by 13 months</td>
</tr>
<tr>
<td></td>
<td>Aug. 2015</td>
<td>Additional Beam Time scheduled for 2016 April - July</td>
</tr>
<tr>
<td></td>
<td>Apr. 2016</td>
<td>List of 40 Projects (Upgrade, Refurbishment) in discussion</td>
</tr>
<tr>
<td>Running shutdown</td>
<td>July 2016</td>
<td>Re-Start of Long Shutdown SIS, ESR</td>
</tr>
<tr>
<td></td>
<td>Feb. 2017</td>
<td>List reduced to 23 Projects</td>
</tr>
<tr>
<td></td>
<td>Feb. 2017</td>
<td>Commissioning and Operation Schedule 2018 fixed</td>
</tr>
<tr>
<td></td>
<td>Apr. 2017</td>
<td>Decision on 8 Projects to be finished before beam time 2018</td>
</tr>
<tr>
<td></td>
<td>Apr. 2017</td>
<td>Call for Proposals for beamtime 2018/19.</td>
</tr>
<tr>
<td></td>
<td>May 2017</td>
<td>Include Civil Construction work for new p-Linac building</td>
</tr>
</tbody>
</table>
8 Projects finally approved*

<table>
<thead>
<tr>
<th>Project</th>
<th>Accelerator Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation new LEBT QQ</td>
<td>UNILAC upgrade</td>
</tr>
<tr>
<td>Refurbishment Poststripper RF FOS</td>
<td>UNILAC RF Refurbishment</td>
</tr>
<tr>
<td>Upgrade Beam line SIS18 to HADES</td>
<td>HEST</td>
</tr>
<tr>
<td>Retrofitting ESR beam diagnostics</td>
<td>ESR</td>
</tr>
<tr>
<td>Commissioning Cryring</td>
<td>Cryring</td>
</tr>
<tr>
<td>Alignment SIS18/HEST/ESR/Cryring</td>
<td>SIS18/HEST/ESR/Cryring</td>
</tr>
<tr>
<td>Upgrade Main Control Room**</td>
<td>SIS18/HEST/ESR/Cryring</td>
</tr>
<tr>
<td>FAIR Migration SIS18/HEST/ESR controls</td>
<td>SIS18/HEST/ESR</td>
</tr>
</tbody>
</table>

*) see poster of M. Vossberg: “Reliability of the GSI / FAIR Facility After a Long Shutdown Phase.”
**) see poster of S. Reimann: “Main Control Room: Upgrade Measures in Preparation for FAIR Phase 0”
Tracing of Progress

- schedule overview
 - poster in meeting room
 - report to management
 - inform GSI public

- weekly coordination meeting
 - report on progress
 - report on decisions from management
 - report on incidents
 - adjust schedule

2000 tasks
15 pages

2016
- Juli
- Aug.
- Sep.
- Okt.
- Nov.
- Dez.
- Jan.
- Feb.
- März
- April
- Mai
- Juni
- July
- Aug.
- Sep.
- Okt.
- Nov.
- Dez.

2017
- Jan.
- Feb.
- März
- April
- Mai
- Juni
- July
- Aug.
- Sep.
- Okt.
- Nov.
- Dez.

2018
- Jan.
- Feb.
- März
- April
- Mai
- Juni
- July
- Aug.
- Sep.
- Okt.
- Nov.
- Dez.

FAIR GmbH | GSI GmbH
Petra Schuett: Planning and Tracing a Long Shutdown
18.10.2017
Status of Schedule today (Oct. 2017)

- **2016**
 - Repair US3/4
 - Repair HSI IH
 - GAF Preparation Work
 - SIS18 H=2 RF System
 - SIS18 Kicker
 - Control System Retrofitting of FAIR System to SIS18, ESR and HEST

- **2017**
 - RF-Tests Alvarez
 - RF-Systems and 1.8MW Thales Power Amplifier Prototype
 - Construct new HVAC for TU-building
 - Switch-over, no air conditioning
 - Repair of TK3 after water issue
 - Replace HSI LEBT QQ
 - Install Cabling
 - Repair old vacuum control
 - Unilac Vacuum Controls Replacement
 - Repair old Unilac vacuum control
 - Install BB helix
 - Refurb, BR-building w.r.t. HVAC and fire protection
 - Rep. HSI IH
 - Repair HSI LE-BT QQ
 - Shielding
 - Refurb, MR
 - Floor sealing
 - Refurb. TR crane, parking position Y56
 - Refurb. MRT
 - Install new HVAC E5.1.0

- **2018**
 - Terminal Nord Upgrade (B-Form)
 - Operation Unilac
 - Operation SIS18, HEST
 - Experiment Beam Time
 - Operation SIS18, HEST
 - ESR Operation

End VMS and NODAL
01.08.16

planned start of SIS commissioning
28.05.18
Incidents

- Main electric switch broken during a test of the emergency stop
 - legacy equipment, hard to replace
 - for > 2 months no work possible on refurbishment of rf systems
- Compensation plate in IH tank broke
 - no spare part
 - manufacturing and copper plating, delay > 6 months
- Water leak in beam line
 - known vacuum problem not followed up (no priority)
 - 400 liters of cooling water in beam pipe
 - damage to foil stripper and to several beam diagnostics devices
 - repair on-going
Civil construction in existing buildings

- secure accelerator devices (cover)
- two pulsed power HV cables damaged during excavation work
- buildings moved by ~10 mm, horizontally and vertically
 - open beam pipe
 - loosen cables, gas pipes etc.
- rain water intruded into accelerator tunnels and into the central electronics room with false floor
 - extensive cleaning work, open issue
Device Tests and Dry Runs

- Testing Periods
 - Are Integral Part of Development of Ion Sources
 - and of the Refurbishment of the Linac RF
 - Needed to keep Power Supplies “alive” (Capacitors dry out)

- But:
 - Refurbishment of Infrastructure (Air conditioning, Water cooling) needs shutdown periods
 - Careful synchronization necessary

- Control system for all machines except UNILAC is replaced by the new FAIR control system

- Dry Runs scheduled for early testing, debugging and adaption to operations needs
CryRing Beam Commissioning

- Stand-alone accelerator with local injector and small ring.
- Operators integrated in commissioning
 - delegated operators joined in
- Organized as a 5 week beam time block including
 - shift schedule
 - on call service
 - daily coordination meeting
- Outcome:
 - (circulating beam)
 - first contact of operations with the new control system
 - revitalization of rules and processes – especially important for new personnel, (technical and administrative)
Conclusion

- **Transparency**
 - provide the same information to the management and to the GSI public
 - keep the schedule up-to-date
 - open communication of priorities, incidents and risks

- **Early milestones and tests**
 - Dry Runs, Beam Time CryRing, (Beam Time 2016)
 - Motivation to finish subprojects or tasks
 - Enable feedback to developers

- **Monitoring**
 - daily patrols of civil construction areas
 - uninterrupted monitoring of vacuum quality
Questions?