Thoughts on HF measurements and flavor dependence of jet quenching

Yen-Jie Lee (MIT)

HI Physics in the 2020’s
MIT, Cambridge, USA
29 October, 2016
Major issues related to HF meson

- Heavy quark production cross-section
- The role of shadowing
- Hardronization mechanism
- Collisional energy loss vs. radiative energy loss
- Could we see the flavor dependence of E_{loss}?
Major issues related to HF meson

• Heavy quark production cross-section

• The role of shadowing

• Hardronization mechanism

• Collisional energy loss vs. radiative energy loss

• Could we see the flavor dependence of E_{loss}?
Calculations are in agreement with FONLL calculations. However, the theoretical uncertainty at low p_T is very large (up to 50%)
D⁰ and B⁺ meson in pp

What is really used in the models are the c quark or b quark p_T spectra...
Motivates D meson and B meson jet fragmentation function measurements to validate our understanding.
Major issues related to HF meson

• Heavy quark production cross-section

• The role of shadowing

• Hardronization mechanism

• Collisional energy loss vs. radiative energy loss

• Could we see the flavor dependence of E_{loss}?
Direct measurement of D_{pPb}, sensitivity limited by the current uncertainties
Could be done by ALICE, LHCb and CMS data taken in 2016 pPb run
(+ pp ref run for ALICE)
LHCb D^0 meson measurement

Precise measurement from LHCb: data consistent with the lower edge of the pQCD calculation using EPS09.

Forward backward ratio: ~ shadowing / EMC region
CMS dijet η data at large Q^2

Consistent with EPS09 at the edge of the uncertainty band. Deviation in the EMC region. Consistent picture between CMS dijet data and LHCb D^0 data.
PHSD with shadowing gives a better description of the CMS preliminary result.
Major issues related to HF meson

• Heavy quark production cross-section

• The role of shadowing

• Hardronization mechanism

• Collisional energy loss vs. radiative energy loss

• Could we see the flavor dependence of E_{loss}?
Interpretation of v_2 data

- Significant flow signal observed in D0, v_2 vs p_T different from charged particles
- Need theoretical calculations at LHC energy without c quark v_2 to answer if the charm quarks flows
- Correlation analysis between D0 and charged particle v_2
- 2020s: Follow up on the real measurement $B(b \rightarrow J/\psi) v_2$ at RHIC and LHC
ALICE will update the D_s measurements with 2015 data
(In principle, CMS could also contribute to D_s measurement)
Expect high statistics measurement from RHIC
Now - 2020s: B_s, Λ_c, Λ_b measurements are becoming feasible by LHC experiments
Projected performance for B_s and Λ_b with 10/nb

B_s: Projected statistical uncertainty is around 3% in PbPb $p_T = 7$-10 GeV/c ($L = 10/nb$)

[~30-60x of the statistics shown in this plot]

Λ_b: Projected statistical uncertainty is around 15% in PbPb $p_T = 7$-10 GeV/c ($L = 10/nb$)

[~ 1/4 – 1/8 of the statistics shown in this plot]

Run IV data would help to provide those rate probes
Charged Hadron R_{pA} is consistent with the published jet R_{pA}
Relevant for the interpretation of the charged particle R_{AA}

To be submitted to JHEP
Major issues related to HF meson

• Heavy quark production cross-section

• The role of shadowing

• Hardronization mechanism

• Collisional energy loss vs. radiative energy loss

• Could we see the flavor dependence of E_{loss}?
D-Dbar correlation

- D-hadron correlation has been studied by ALICE in pp and pPb collisions

- DD(bar) correlation in pp was studied by LHCb, to be done in PbPb by ALICE / CMS

- Difference between prediction with collisional and radiative energy loss goes away quickly as p_T increases…
D/B-jet and D/B-photon correlation

- Propose to study D/B-jet and D/B-photon correlation at RHIC and LHC
- D meson and B meson as a tool to study the fate of the intermediate p_T HF partons
- Relatively less likely to come from medium response, mass scale >> medium scale
- Jet and photon as a proxy to the initial parton direction
- Propose to study D/B-jet and D/B-photon correlation at RHIC and LHC
- D meson and B meson as a tool to study the fate of the intermediate p_T HF partons
- Relatively less likely to come from medium response, mass scale $>>$ medium scale
- Jet and photon as a proxy to the initial parton direction
Major issues related to HF meson

• Heavy quark production cross-section
• The role of shadowing
• Hardronization mechanism
• Collisional energy loss vs. radiative energy loss
• Could we see the flavor dependence of E_{loss}?
No significant difference between CMS B\(^+\)
D\(^0\) and charged hadron \(R_{AA}\) in PbPb
at 5.02 TeV
No significant difference between CMS B^+ and D^0 R_{AA} in PbPb at 5.02 TeV

Significant difference between CMS non-prompt J/ψ and ALICE D meson in PbPb at 2.76 TeV
No significant difference between B^+, non-prompt J/ψ R_{AA}
The reason could be associated with the rapidity dependence of the suppression. To be followed up with $B^+ R_{AA}$ with $|y|<1$ and its the rapidity.
Future (Run II+III) ~20-30x more data

- High precision charged particle, D^0 and $B^+ R_{AA}$ and ν_N data!
- Access to multiple B^+, B^0 and B_s decay channels
- Jet / photon tagged HF mesons: provide multiple checks on medium modifications of the HF meson kinematics distributions
• Jets are modified in medium
• Separate quark and gluon: use high p_T jets (and groomed jet substructure) to increase the scale difference between medium and the hard scattering
• Can we separate quark and gluon jets without touching the jets?
Z decay kinematics in Collins–Soper Frame

\[A_0 = \left\langle \sin^2 \theta_1 \right\rangle \]
\[A_1 = \frac{1}{2} \left\langle \sin 2\theta_1 \cos \phi_1 \right\rangle \]
\[A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle \]
\[A_3 = a \left\langle \sin \theta_1 \cos \phi_1 \right\rangle \]
\[A_4 = a \left\langle \cos \theta_1 \right\rangle \]
\[A_5 = \frac{1}{2} \left\langle \sin^2 \theta_1 \sin 2\phi_1 \right\rangle \]
\[A_6 = \frac{1}{2} \left\langle \sin 2\theta_1 \sin \phi_1 \right\rangle \]
\[A_7 = a \left\langle \sin \theta_1 \sin \phi_1 \right\rangle \]

Discussion with Jen-Chieh Peng
Z boson decay kinematics

1) \(q\bar{q} \rightarrow \gamma^*(Z^0)g \)

In \(\gamma^* \) rest frame (C-S):

\[
\sin^2 \beta = \frac{q_T^2}{Q^2 + q_T^2}
\]

\(\theta_1 = \beta \) and \(\phi_1 = 0; \quad A_0 = A_2 = \sin^2 \beta \)

\[
\chi = \frac{2 - 3A_0}{2 + A_0} = \frac{2Q^2 - q_T^2}{2Q^2 + 3q_T^2}; \quad \nu = \frac{2A_2}{2 + A_0} = \frac{2q_T^2}{2Q^2 + 3q_T^2}
\]
2) $qg \rightarrow \gamma^*(Z^0)q$

In γ^* rest frame (C-S)

$\theta_1 = \beta$ and $\phi_1 = 0$

$\theta_1 > \beta$ and $\phi_1 = 0$; $A_0 = A_2 \approx 5q_T^2/(Q^2 + 5q_T^2)$

$\lambda = \frac{2 - 3A_0}{2 + A_0} = \frac{2Q^2 - 5q_T^2}{2Q^2 + 15q_T^2}$; $\nu = \frac{2A_2}{2 + A_0} = \frac{10q_T^2}{2Q^2 + 15q_T^2}$
Quark and Gluon Jet Fraction

\[\lambda = \frac{2Q^2 - q_T^2}{2Q^2 + 3q_T^2} \quad \text{for } q\bar{q} \to Zg \]

\[\lambda = \frac{2Q^2 - 5q_T^2}{2Q^2 + 15q_T^2} \quad \text{for } qG \to Zq \]

For both processes
\[\lambda = 1 \text{ at } q_T = 0 \quad (\theta_1 = 0^\circ) \]
\[\lambda = -1/3 \text{ at } q_T = \infty \quad (\theta_1 = 90^\circ) \]

Data can be well described with a mixture of 58.5% qG and 41.5% $q\bar{q}$ processes.

Jen-Chieh Peng
PLB758 (2016) 384
Idea: Selection on the away side jet could change the fraction of Z boson coming from qq and qG scattering.

With Z polarization studies, one could measure possible modification of:

1. Z production in pPb and PbPb compared to pp
2. The flavor dependence of the jet modification in [pT spectra, shape and fragmentation function]

To be done with high statistics Run II+III data (and Run IV data)

Possible caveat: consideration of NLO corrections
~40% better impact parameter resolution at low track p_T

Significant reduction of the fake track rate, and improvement of the $b(c)$-jet tagging and D^0 meson reconstruction efficiency
CMS Phase 2 upgrade (2024)

Phase 2 Tracker

- Strip/Strip Modules
 - 90 μm pitch/5 cm length

- Inner Pixel
 - Covers up to η=4.0

- Strip/Pixel Modules
 - 100 μm pitch/2.5 cm length
 - 100 μm x 1.5 mm “macropixels”

- Tracking capability up to η=4
- Possible muon tagging up to η=3-4
Summary

- Heavy quark production cross-section
 - Precise measurement of B and D spectra down to low p_T in pp
 - D and B fragmentation function in pp, pPb and PbPb

- The role of shadowing
 - D and B R_{pA} from ALICE, LHCb and CMS
 - Dijet η with Run II data from CMS (ATLAS)

- Hardronization mechanism
 - $D v_2$ measurement in pPb vs. event size
 - Charm+X: D_s, Λ_c
 - Bottom+X: B_s, Λ_b with CMS Run II+III (+IV) data

- Collisional energy loss vs. radiative energy loss
 - Precision measurement of D, B and non-prompt J/ψ RAAs at RHIC and LHC
 - D-photon, D-jet measurement (CMS / ATLAS / sPHENIX)
 - D-D and D-hadron measurements (ALICE, CMS)

- Could we see the flavor dependence of E_{loss}?
 - Precision measurement of HF RAAs at RHIC and LHC
 - High p_T jet substructure for the separation of quark and gluons, (bbar) jets
 - High statistics Z-tagged jet studies (Run II+II (+IV))
Z-jet production in $O(\alpha_s)$

1) $q\bar{q} \rightarrow \gamma^* (Z^0) g$

2) $qg \rightarrow \gamma^* (Z^0) q$
Calendar Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>Technology R&D</td>
<td></td>
</tr>
<tr>
<td>TDRs</td>
<td></td>
</tr>
<tr>
<td>Design and Prototyping</td>
<td></td>
</tr>
<tr>
<td>Engineering Design</td>
<td></td>
</tr>
<tr>
<td>Pre-Production</td>
<td></td>
</tr>
<tr>
<td>Production/Construction</td>
<td></td>
</tr>
<tr>
<td>Install/Commission</td>
<td></td>
</tr>
</tbody>
</table>
D vs