
The MIXMAX Random Number
Generator in ROOT

L. Moneta
(EP/SFT)

MIXMAX Consortium Meeting, 5 September 2016

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Outline

Introduction to ROOT
Random Numbers in ROOT
Integration of MIXMAX generator in ROOT
MIXMAX tests on divergence of trajectories
Summary and future plans

2

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

What is ROOT ?
Framework for large scale data handling
Provides, among others,

an efficient data storage, access and query system
possibility to write C++ objects to file
used for petabyte/year rates of LHC data

 statistical data analysis:
histogramming
fitting and minimization
multi-variates analysis algorithms  
(including machine learning methods)
advanced statistical tools  
(combination of results, discovery significance, etc..)

scientific visualization:  
2D and 3D graphics, Postscript, PDF, LateX

Open source project with several thousands of users

3

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Example: ROOT Graphics

4

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Random Numbers in ROOT
Random numbers are at the base of Monte Carlo methods for
simulation
ROOT libraries are used in several simulation applications

ROOT provides the needed Math libraries,  
including pseudo-random number generators

Random numbers are used in statistical analysis
Frequentist statistics (e.g hypothesis tests)  
 require generating several random experiments  
 (bootstrapping methods)

Monte Carlo integration algorithms are also based  
on random numbers

algorithms like VEGAS or Markov-Chain MC  
are available in ROOT

5

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Requirements on PRNG

Correctness of generated random number

avoid ending-up producing wrong results

CPU Efficiency of generation

time spent in a PRNG should be much smaller than the rest

Reproducibility of the random sequence is needed for testing
and debugging (especially in simulation applications)

Efficient algorithm for generating random numbers according
to given distributions (e.g. Gaussian, Poisson)

Ability to generate un-correlated random streams for parallel
executions

6

ROOT User Workshop 15-18 September 2015L. Moneta / PH-SFT

New Random Number Design
New design for Random number classes has been introduced in ROOT
last year
Clear separation between

engine classes (that generates the numbers)
generation of numbers according to distributions

Classes implementing algorithms for generation of pseudo-random
numbers

e.g. ROOT::Math::MersenneTwisterEngine, ROOT::Math::MixMaxEngine
 Class for implementing most used random number distributions (e.g.
Gaus, Poisson, Binomial,…)

ROOT::Math::RandomFunctions
User interface class

ROOT::Math::Random

7

ROOT User Workshop 15-18 September 2015L. Moneta / PH-SFT

MIXMAX Engine Class
MIXMAX pseudo-random number generator has been integrated in the
ROOT::Math::MixMaxEngine class

simple wrapper to the original C implementation (from MIXMAX
version 1.0)

8

 class MixMaxEngine : public TRandomEngine {

 public:

 typedef TRandomEngine BaseType;

 MixMaxEngine(uint64_t seed=1);

 /// set the generator seed using a 64 bits integer
 void SetSeed64(uint64_t seed);

 /// set the number of iteration to skip
 static void SetSkipNumber(int /*nskip */)

 /// generate a double random number
 inline double operator() ();
 …..

 private:

 rng_state_t * fRngState; // mix-max generator state
 };

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Example of Usage

9

 ROOT::Math::RandomMT r(seed); // RandomMT is a typedef  
 // to Random<MersenneTwisterEngine>

 double number = r.Rndm(); // generate number in [0,1]

 double gauss_number = r.Gauss(mean,sigma); // generate a normal number

 // using MIXMAX
 ROOT::Math::RandomMixMax r2(seed);

 int n = r2.Poisson(4.2) // generate a Poisson number with mu=4.2

 // using CNRG generator of L’Ecuyer from GSL implementation
 ROOT::Math::Random<ROOT::Math::GSLRngCMRG> r3(seed);
 double chi_number = r3.ChiSquare(ndf)

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

MIXMAX generator in ROOT

Since ROOT version 6.05.02 MIXMAX has been included
as a new Engine class in the new design

ROOT::Math::MixMaxEngine
6.06 contains version 1.0 of MIXMAX with some
modifications
Master (6.07) contains the version 1.1

Tests have been performed on the new MIXMAX
generators and compared with the other generators
available in ROOT

10

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Divergence of nearby trajectories
Study evolution of the distance of two nearby trajectories

test described in Ranlux Luscher paper
Two trajectories start from two nearby points in the generator state (two
generator states differing only by 1-bit)
Look how the distance of the trajectories evolves (as function of iteration
number)
If the generator is a K-system the distance evolves exponentially

since the computer number space is finite, the distance will be constant
when half of the maximum is reached

The rate of divergency is proportional to the log of the maximum eigenvalue
Various metrics are possible. Decided to use (as in Luscher paper) the
Chebyshev distance

distance = maxi(s1i,s2i)
start with several random initial states all with distance=1

11

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Divergence for RanLux
from M. Luescher paper:

12
M. Luescher, “A Portable High-Quality Random Number Generator for Lattice Field Theory Simulations”, Comput.Phys.Commun. 79 (1994) 100-110

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Result for MIXMAX version 1.0

13

0 2 4 6 8 100

10

20

30

40

50

60

 / ndf 2χ 0.2737 / 3
Prob 0.9649
p0 1.519±1.564 −
p1 0.4875± 11.77

 / ndf 2χ 0.2737 / 3
Prob 0.9649
p0 1.519±1.564 −
p1 0.4875± 11.77

Deviations for ROOT::Math::MixMaxEngine - N=256

iteration number

lo
g 2

(d
is

ta
nc

e)

MIXMAX 1.0
N=256
s = -1

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Distance for MIXMAX 1.0

14

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

Distance for Iteration 1

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

Distance for Iteration 2

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

Distance for Iteration 3

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

Distance for Iteration 4

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

Distance for Iteration 5

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 6

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Result for MIXMAX version 1.1

15

0 2 4 6 8 100

10

20

30

40

50

60

Deviations for ROOT::Math::MixMaxEngine - N=256

iteration number

lo
g 2

(d
is

ta
nc

e)

MIXMAX 1.1
N=256

s = 487013230256099064

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 1

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 2

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 3

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 4

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Distance for Mersenne-Twister
32 bits version of MT

16

0 2 4 6 8 100

5

10

15

20

25

30

Deviations for Mersenne-Twister

 log2(Deviation)
0 5 10 15 20 25 30

1

10

210

310

410

Distance for Iteration 1

 log2(Deviation)
0 5 10 15 20 25 30

210

310

410

Distance for Iteration 2

 log2(Deviation)
0 5 10 15 20 25 30

1

10

210

310

410

Distance for Iteration 3

 log2(Deviation)
0 5 10 15 20 25 30

1

10

210

310

410

Distance for Iteration 4

iteration number

lo
g 2

(d
is

ta
nc

e)

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Distance for new MIXMAX (N=240)

N=240, s=487013230256099140, m=251+1

17

0 2 4 6 8 100

10

20

30

40

50

60

Deviations for ROOT::Math::MixMaxEngine - N=240

 log2(Deviation)
0 20 40 60 80 100 120

1

10

210

310

410

Distance for Iteration 1

 log2(Deviation)
0 20 40 60 80 100 120

1

10

210

310

410

Distance for Iteration 2

 log2(Deviation)
0 20 40 60 80 100 120

210

310

410

Distance for Iteration 3

 log2(Deviation)
0 20 40 60 80 100 120

210

310

410

Distance for Iteration 4

 log2(Deviation)
0 20 40 60 80 100 120

210

310

410

Distance for Iteration 5

 log2(Deviation)
0 20 40 60 80 100 120

210

310

410

Distance for Iteration 6

iteration number

lo
g 2

(d
is

ta
nc

e)

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Distance for new MIXMAX (N=17)
N=17, s=0, m=236+1

18

0 2 4 6 8 100

10

20

30

40

50

60

Deviations for ROOT::Math::MixMaxEngine - N=17

iteration number

lo
g 2

(d
is

ta
nc

e)

 log2(Deviation)
0 20 40 60 80 100 120

10

210

310

410

Distance for Iteration 1

 log2(Deviation)
0 20 40 60 80 100 120

10

210

310

410

Distance for Iteration 2

 log2(Deviation)
0 20 40 60 80 100 120

10

210

310

410

Distance for Iteration 3

 log2(Deviation)
0 20 40 60 80 100 120

1

10

210

310

410

Distance for Iteration 4

 log2(Deviation)
0 20 40 60 80 100 120

410

Distance for Iteration 5

 log2(Deviation)
0 20 40 60 80 100 120

410

Distance for Iteration 6

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Decimation
Independence (randomness) is guaranteed by the mixing (K-
system)
When maximum distance is reached the K-system is sufficient
asymptotic

i.e. states are uncorrelated
Idea is then to discard some iterations to reach this state
We have modified MIXMAX ROOT version 1.0 to foreseen
possibility to discard some iterations

Default value of 2 has been used (only one iteration in 3 is
maintained) in ROOT version 6.06

We would like to have this capability directly inside C++ (e.g.
using it as a template parameter)

19

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

PRNG CPU Performance

20

LCG TRandom2

Mersenne Twister

RANLUX
MIXMAX

std::mt19937

GSLRngMT
MT.Gauss

MT.Poisson

Ti
m

e
to

 g
en

er
at

e
a

nu
m

be
r (

ns
)

0

5

10

15

20

25

30
Rndm (0,1]
Gauss
Poisson

74 ns 90 ns
CPU performance for PRNGs available in ROOT

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Further Tests of MIXMAX

ROOT version of MIXMAX 1.0 (with decimation) has been
tested by Jiri Hladki

used TestU01, PractRand and GJRand
no decimation: some tests failing with very small p-
values
when skipping two iterations: all tests are passing

MIXMAX version 1.1 (no decimation), N=255 fails also
PractRand and GJRand tests
MIXMAX version 2.0 with N=17,60,96,240 passes all the
tests (according to test results communicated by J. Hladki)

21

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Summary

Confident of version of MIXMAX 1.0  
with decimation (with skip number = 2)
Version with large s (N=256 in MIXMAX 1.1)  
seems problematic

Large spread in  
distance observed
Failing some  
statistical tests
Doubts on using such large  
number s in the matrix

22

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 1

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 2

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 3

 log2(Deviation)
0 10 20 30 40 50 60

1

10

210

310

410

Distance for Iteration 4

0 2 4 6 8 100

10

20

30

40

50

60

 / ndf 2χ 0.2737 / 3
Prob 0.9649
p0 1.519±1.564 −
p1 0.4875± 11.77

 / ndf 2χ 0.2737 / 3
Prob 0.9649
p0 1.519±1.564 −
p1 0.4875± 11.77

Deviations for ROOT::Math::MixMaxEngine - N=256

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Summary (2)
New generators (MIXMAX version 2.0) with large s and m
values are passing all tests.

Do we still need skipping in this case ?
Need to gain more confidence on these new generators with
large s and m
Objection of M. Luscher and F. James that by using large s
and m the steps caused by the matrix multiplications are
too large and the discrete-continuous approximation
breaks.

this needs to be understood
Are generators with large values of N needed ?

23

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Future Plans

Goal to have a full C++ implementation of MIXMAX
nice we have already a preliminary one in version 2.0
we need a parametric template generator where user can
instantiate some pre-defined parameters

size of the state, N with corresponding values of s, m
decimation value

Integrate same C++ version in both ROOT and Geant (CLHEP)
Version management

code maintained in Github ?
would be clearer which version one is using

24

MIXMAX Network Meeting 5/09/ 2016L. Moneta / EP-SFT

Conclusions

Modernisation of random classes in ROOT
a first version with MIXMAX is available in ROOT 6.06 version

Hope to reach a consensus on its parameters
having a family of generators

different N (256 from MIXMAX version 1.0)
generators from MIXMAX 2.0 (e.g N=240 and N=17)
would like to have also version with moderate s and m values

Develop a C++ version which can be integrated in ROOT and
Geant.

making it also the default random number generator in ROOT
and we will continue to perform statistical tests of the generators

25

