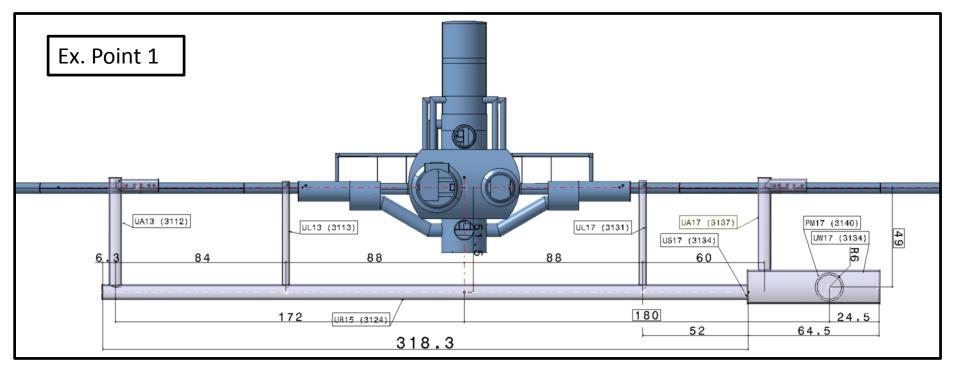
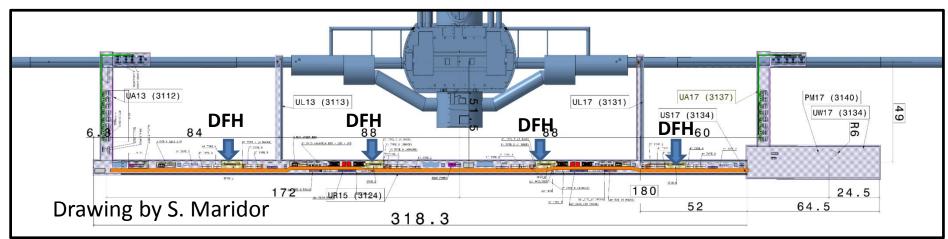
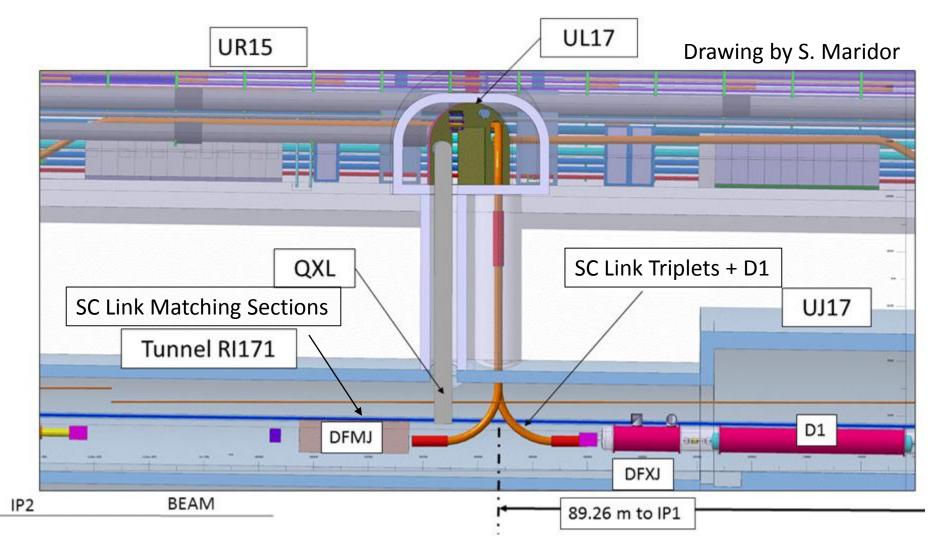

Powering of HL-LHC Triplets and MSs

13th HL-LHC Technical Coordination Committee

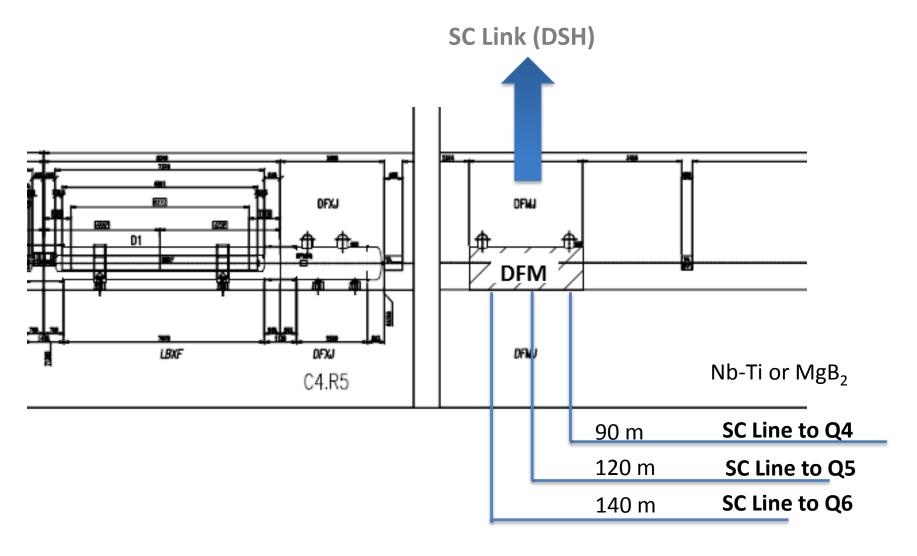

A. Ballarino


04/08/2016

Until mid 2015



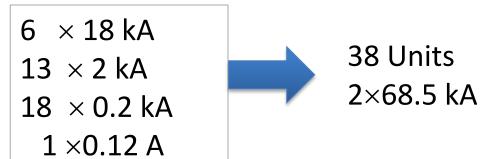
In March 2016 - Circuits Review



In March 2016 - Circuits Review

Routing of Nb-Ti bus-bars of Triplets and D1 inside magnets cold masses

In March 2016 - Circuits Review


SC Lines to Q4, Q5 and Q6 included in WP6

In March 2016 – Circuits Review

Power converter	Current	
Type 1	18kA	Q1/Q3 – Q2a/Q2b 20 kA
Type 2	13kA	D2, D1
Type 3	6kA	Q4, Q5, Q6 Q4 16 kA
Type 4	±2kA	Orbit correctors Q3 and Q2, Trim on Q3
Type 5	±600A	Orbit correctors D2 and Q4 2 kA
Type 6	±200A	CP CP
Type 7	±120A	Correctors Q5 and Q6, Trim on Q2
Total		

Overview of Cold Powering System Number of Leads and of SC cables, Current Rating

Triplets, D1 and CP – per IP Side

Matching Sections – per IP Side

 $18 \times 0.12 \text{ kA}$

$2 \times 13 \text{ kA}$	48 Units
$12 \times 6 \text{ kA}$	2×54.8 kA
$16 \times 0.6 \text{ kA}$	Z^J4.0 KA

Туре	N_IPside			
18 kA	6			
13 kA	4			
6 kA	12			
2 kA	13			
0.6 kA	16			
0.2 kA	18			
0.12 kA	19			

Per IP side: 2×123 kA, 86 Leads/SC Cables

Hi-Luminosity Upgrade: 2×492 kA, 344 Leads/SC Cables

Presented at Circuits Review, March 2016

Present baseline – after Circuits Review

	Circuits for HiLumi	Magnet Type	Number of circuits per IP side	Number of circuits	I_nominal [kA]	I_ultimate [kA]	I_rated [kA]
	Triplet Q1, Q2a, Q2b, Q3	MQXFA / MQFXB	1	4	16.5	17.8	18.0
	Trim Q1				2		2.0
	Trim Q3				2		2.0
	Trim Q2a				0.12		2.0
	Orbit correctors Q2a/b - vertical	MCBXFBV	2	60	1.6	1.73	2.00
<u>e</u>	Orbit correctors Q2a/b - horizontal	MCBXFBH	2	8	1.47	1.59	2.00
Triplet	Orbit correctors CP - vertical	MCBXFAV	1	4	1.6	1.73	2.00
Inner	Orbit correctors CP - horizontal	MCBXFAH	1	4	1.47	1.59	2.00
	Superferric, order 2	MQSXF	1	4	0.182	0.20	0.20
	Superferric, order 3, normal and skew	MCSXF / MCSSXF	2	8	0.105	0.11	0.12
	Superferric, order 4, normal and skew	MCOXF / MCOSXF	2	8	0.105	0.11	0.12
	Superferric, order 5, normal and skew	MCDXF / MCDSXF	2	8	0.105	0.11	0.12
	Superferric, order 6	MCTXF	1	4	0.105	0.11	0.12
	Superferric, order 6, skew	MCTSXF	1	4	0.105	0.11	0.12
D12	Separation dipole D1; MBXF	MBXF	1	4	12	13.0	13.0 ³

Circuits for HL-LHC MSs, A. Wollmann and F. M. Rodriguez, June 2016

Circuits Review (March 2016)

Triplets and D1– per IP Side

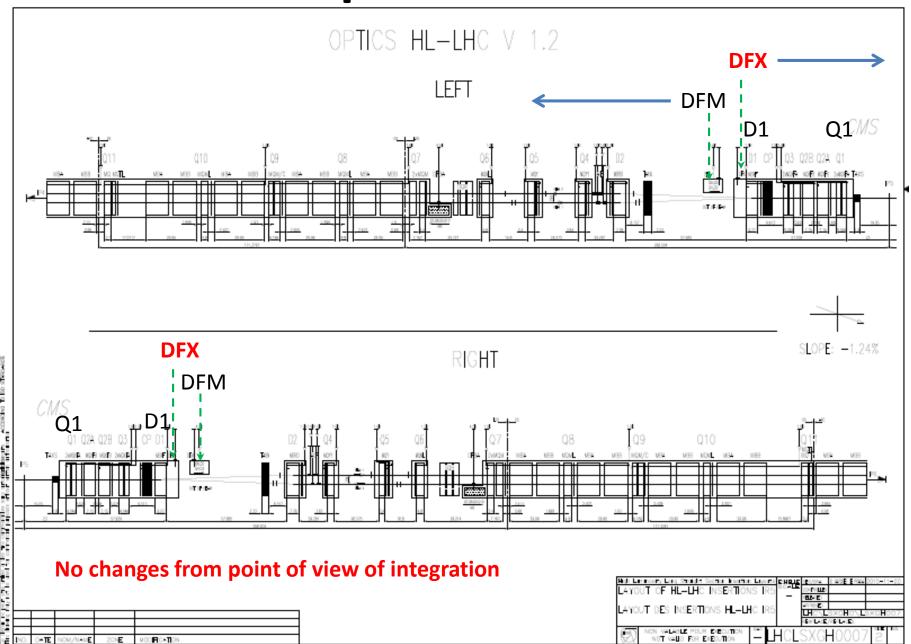
$$6 \times 18 \text{ kA}$$

 $13 \times 2 \text{ kA}$

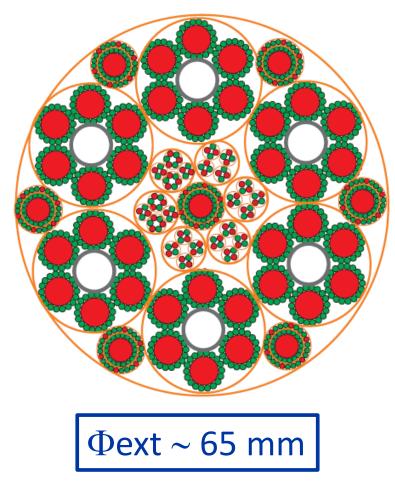
 $18 \times 0.2 \text{ kA}$

 $1 \times 0.12 A$

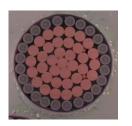
Present Baseline


$$4 \times 18 \text{ kA}$$

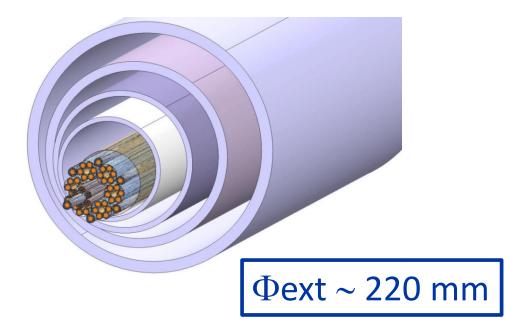
 $14 \times 2 \text{ kA}$


 $2 \times 0.2 \text{ kA}$

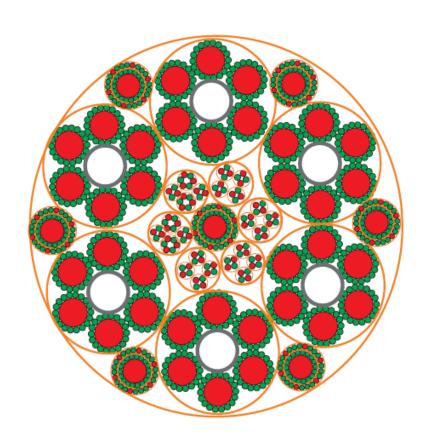
 $16 \times 0.12 A$



Hi-Lumi Triplets and D1



Mass $\sim 11 \text{ kg/m}$



MgB₂ 18-strand cable

No changes from point of view of Current Leads design, DFH and DFX design, and SC Link layout

Required

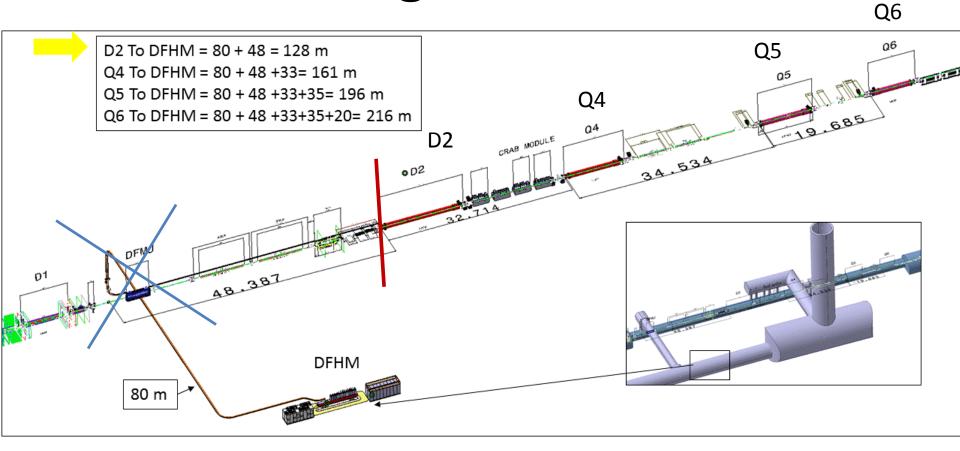
$$4 \times 18 \text{ kA}$$
 $14 \times 2 \text{ kA}$
 $2 \times 0.2 \text{ kA}$
 $16 \times 0.12 \text{ kA}$

Available

$$4 \times 18 \text{ kA} + 2 \text{ spares}$$

 $14 \times 2 \text{ kA}$
 $2 \times 0.2 \text{ kA} + 8 \text{ spares}$
 $16 \times 0.12 \text{ kA}$

- 2 kA Current Leads are concentric
- > Spare cables will be installed in the SC Link cold mass
- > Spare leads will be available for installation


Matching Sections

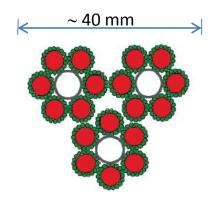
	Circuits for HiLumi	Magnet Type	Number of circuits per IP side	Number of circuits	I_nominal [kA]	I_ultimate [kA]	I_rated [kA]
푱	Large aperture 2-in1 Quad; Q4	MQYY	2	8	4.50	4.9	6.0
σ	Orbit correctors Q4	MCBYY	4	16	0.5	0.54	0.6
45	Present LHC Q4 magnet	MQY	2	8	4.51	4.9	6.0
Ö	Orbit correctors present Q4	MCBY	6	24	0.072	0.08	0.12
8	Insertion Quad, 2-in1 aperture; Q6	MQML	2	8	4.31	4.7	6.0
0	Orbit correctors Q6	MCBC	2	16	80.0	0.09	0.12
DZ ²	Separation dipole D2;MBRD	MBRD	1	4	12	13.0	13.0 ³
	Orbit correctors D2	MCBRD	4	16	0.5	0.54	0.6

Circuits for HL-LHC MSs, A. Wollmann and F. M. Rodriguez, June 2016

- ightharpoonup D2 at 1.9 K and **12 kA** \Rightarrow Required new powering
- For Q4, Q5 and Q6 consider use of existing DFBL and associated DSL

Matching Sections – D2

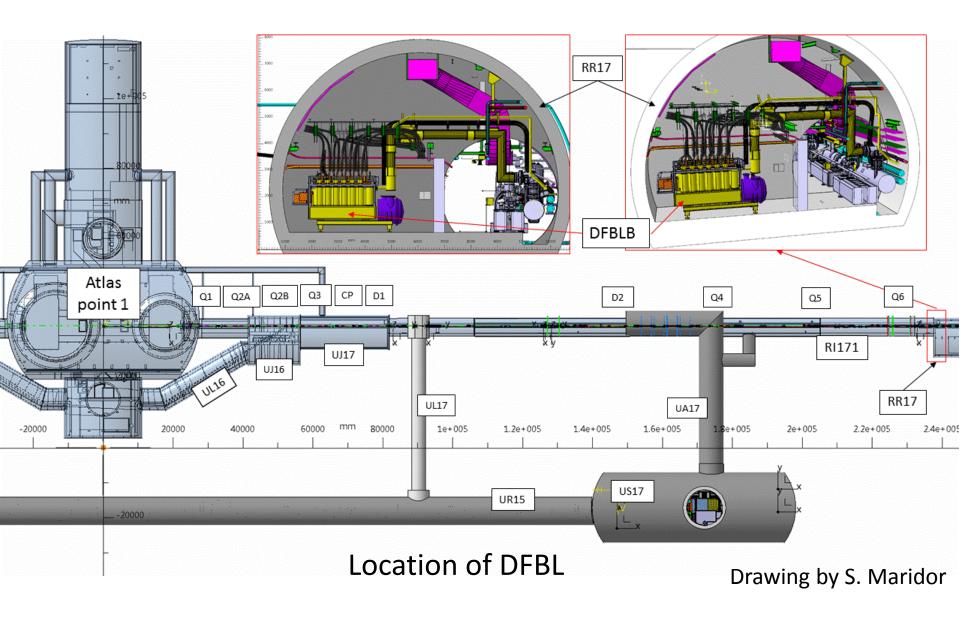
Small DFBM attached to D2

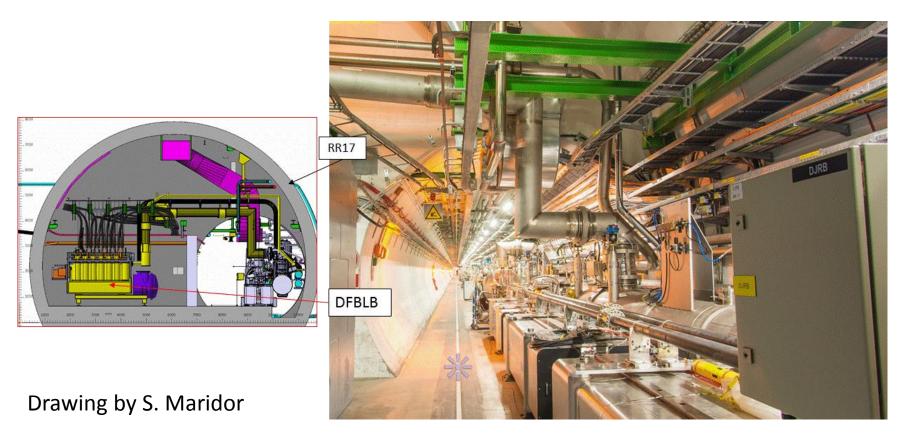

Meeting A. Ballarino, S. Claudet, V. Parma, June 2016

A. Ballarino

Matching Sections – D2

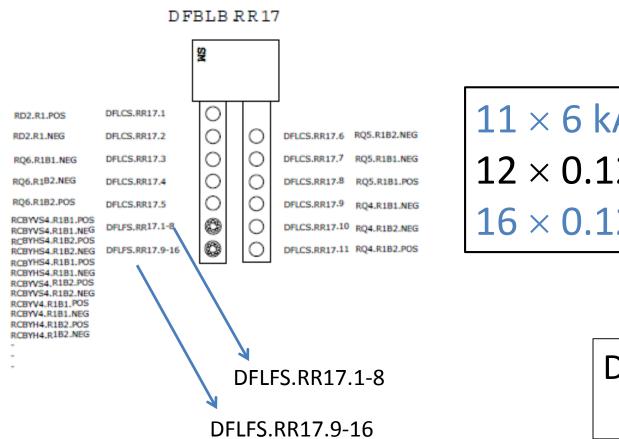
➤ Leads/Cables for D2 (separation dipole and orbit correctors):


 2×12 kA (+ 1 spare cable in the SC Link) 8×0.5 kA (+2 spare cables in the SC Link)


Current leads in new underground tunnel
 SC Link ~ 130 m long

Separate powering of D2: yes, possible – no major issues

Matching Sections – Q4, Q5 and Q6



Matching Sections – Q4, Q5 and Q6

DSL in LHC tunnel

Matching Sections – Q4, Q5 and Q6

 $11 \times 6 \text{ kA (HTS)}$ $12 \times 0.12 \text{ kA used}$ $16 \times 0.12 \text{ kA available}$

> DSL: $12 \times 6 \text{ kA}$ $48 \times 0.6 \text{ kA}$

Current Leads in existing DFBL

Current Leads for HL-LHC Q4, Q5 and Q6

1.9 K	Circuits for HiLumi	Magnet Type	Number of circuits per IP side	Number of circuits	I_nominal [kA]	I_ultimate [kA]	I_rated [kA]	
8	Large aperture 2-in1 Quad; Q4	MQYY	2	8	4.50	4.9	6.0	
0	Orbit correctors Q4	MCBYY	4	16	0.5	0.54	0.6	
1.9 K	L.9 K							
5.5	Present LHC Q4 magnet	MQY	2	8	4.51	4.9	6.0	
	Orbit correctors present Q4	MCBY	6	24	0.072	0.08	0.12	
4.2 K	4.2 K							
	Insertion Quad, 2-in1 aperture; Q6	MQML	2	8	4.31	4.7	6.0	
	Orbit correctors Q6	MCBC	2	16	0.08	0.09	0.12	

Circuits for HL-LHC MSs, A. Wollmann and F. M. Rodriguez

 12×6 kA, but reduced to:

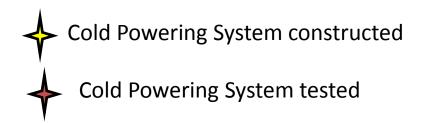
- ✓ 9 × 6 kA if 3-leads powering scheme adopted (as in LHC)
- \checkmark 16 × 0.12 kA
- ! 8× 0.6 kA (missing)
- ➤ Dedicated SC Link for the powering of Q4 orbit corrector magnets or local powering of Q4 orbit correctors

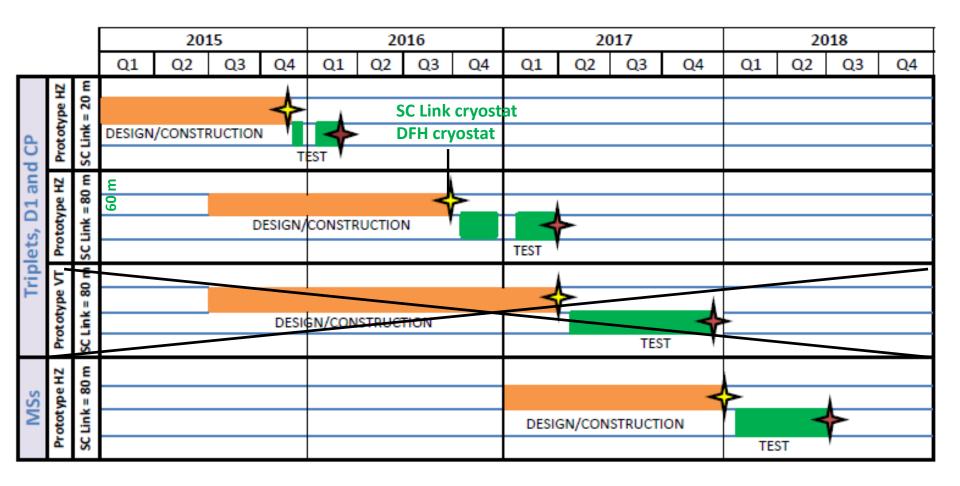
Powering of Matching Sections

Summarizing:

- ightharpoonup Individual powering of $D2 \Rightarrow OK$;
- \triangleright Powering of Q5, Q6 and MQYY (Q6) via existing DFBL \Rightarrow OK;
- ➤ Missing powering of 600 A Q4 orbit correctors (8 leads)
 - Dedicated SC Link (for Q4 or only for Q4 correctors)
 - Local powering
- To be studied with cryo the possibility of a complete or partial re-use of the existing DSL
- ➤ If DSL to replaced: new SC Link (Nb-Ti or MgB₂ based)

Short update on WP6a last months activities


- Launched procurement of <u>six semi-flexible cryostats</u> each <u>60 m</u> long (DO-29687/TE/HL-LHC)
 Three companies: Nexans, Cryotec and Cryoworld
 Two variants (with and without active thermal shield)
- Launched collaboration with the Main Workshop for the manufacturing and assembly of <u>two units of 18 kA HL-LHC prototype current leads</u>. Raw material procured
- Launched MS for production of <u>full Triplets + D1 current leads</u> <u>system</u> (collaboration with Main Workshop) – manufacturing of components (raw material and assembly by CERN)


- Launched PE (DO-29821/TE/HL-LHC) for <u>cabling in industry of MgB₂ wire</u> (18-wire cable with flexible Cu core). Several companies contacted (among which Nexans and TRATOS). Answers by end of August 2016
- Launched R&D contract on MgB_2 with Columbus. Scope: reduction of cost of MgB_2 wire via production of longer lengths of wire (billets from ~ 21 to ~ 48 mm outer diameter) DAI 6378524
- ▶ Launched IT for procurement of 200 km of MgB₂ wire delivered in unit lengths of up to 2 km (IT-4253/HL=LHC). Implementation of results from R&D contract. Opening of offer this coming Monday
- Visited (with L. Bottura and M. Benedikt) Russian laboratory in Moscow (VNIIKP, R&D Cable Institute)

- Progress on design of DFX cryostat for Triplets (C. Ferrer and V. Parma). Mock-up of routing of MgB₂ cables for DFX cryostat (SCD, building 288)
- Construction of prototype DFX module in Main Workshop (completed by end of August 2016)
- Production and qualification of MgB₂-MgB₂ and MgB₂-NbTi high-current electrical joints (measurements in He gas and in LHe). Presentation at ASC conference (S. Giannelli)
- ➤ Discussions on strategy for testing the 60 m long and the series SC Links (with SM-18 and cryo teams) (EDMS N. 1698461)
- ➤ Electro-mechanical measurements of MgB₂ wires and cables, electrical insulation tests of MgB₂ cables,
- Space: building 927. Needed latest by mid Sept 2016 (delivery of 60 m long cryostats)
 A. Ballarino

Prototype activity – Phase 1

Cost & Schedule Review, March 2015

