

Needs for shielding in the connection cryostats in IR2 DS

Cristina Bahamonde, Anton Lechner with input from M. Moretti, D. Duarte, A. Vande Craen, T. Mertens, J.M. Jowett, R. Bruce, S. Redaelli, M. Schaumann, M. Brugger, S. Danzeca, R. Garcia Alia

14th HL-LHC TCC 01/09/2016

Limiting case to evaluate the need for shielding: ion operation

J.M. Jowett, LHC Performance Workshop, Chamonix, 28/01/2016

BFPP: ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \rightarrow {}^{208}Pb^{82+} + {}^{208}Pb^{81+} + e^+$

<u>For HL-LHC conditions</u> σ = 281 b, estimated beam power <u>~155W</u>

EMD: ${}^{208}Pb^{82+} + {}^{208}Pb^{82+} \rightarrow {}^{208}Pb^{82+} + {}^{207}Pb^{82+} + n$

<u>For HL-LHC conditions</u> σ = 101.7 b, estimated beam power <u>~56W</u>

Particle showers from TCLD intercepting these secondary beams could damage electronics or quench sensitive parts of magnets and bus bars further downstream

Implementation of the cryostat model in FLUKA

Quench risk: superconducting magnet coils

Collimator maintains the peak power density in the magnet coils at least a factor 10 below their estimated quench limit

Quench risk: lyras & M lines of the cryostat

Most exposed M line ~2 mW/cm³

Current cryostat design with no added shielding gives a peak power density in the bus bars of at least a factor 100 lower than their estimated quench limit

Radiation to Electronics: cumulative damage (dose)

Radiation to Electronics: Single Event Effects (HEH fluence)

R2E expectations based on data for proton runs on IR1/5: target levels for electronics per year				
Single Event Effects (<u>stochastic</u>)	Run 3 (100 fb ⁻¹)		Run 4 (200 fb ⁻¹)	
	DS area (cell 7-11) Worst case	ARC area (cell 12-34)	DS area (cell 7- 11) Worst case	ARC area (cell 12-34)
HEH fluence	~2x10 ¹⁰ HEH/cm ²	~4x10 ⁸ HEH/cm ²	~4x10 ¹⁰ HEH/cm ²	~8x10 ⁸ HEH/cm ²

Results normalized to 10 nb⁻¹(target integrated luminosity for ALICE during the whole HL-LHC ion period)

> HEH fluence during ion runs over <u>all</u> years of HL-LHC operation

Probabilities of SEE failure for a certain HEH fluence are calculated for the total number of units in the machine

> Probability of SEE failure may increase in these racks but not in the rest of the LHC areas: the overall probability of failure would not be significantly affected

No risk of compromising the machine operation due to HEH fluence levels

M. Brugger

Conclusions and outlooks

For target instantaneous luminosities during ion operation (6x10²⁷cm⁻²s⁻¹), installing a collimator in the DS of IR2 (provided it intercepts the 2^{ary} beams with a 2mm impact parameter):

- eliminates the risk of quenching any downstream magnets
- does not introduce a risk of quenching M lines or lyras in the shuffling module

For a target integrated luminosity of 10 nb⁻¹ over the whole HL-LHC ion operation, no added shielding in the new cryostat is required as long as:

- the electronic racks under the MB.A12 are displaced towards the end of the magnet. This way the dose they are exposed to would get halved
- a rack rotation or a non-electronic zone is foreseen

Radiation to Electronics: dose & HEH below new cryostats

R2E: remark

Dose and HEH fluence during ion runs over <u>all</u> years of HL-LHC operation

