

Standard Model (SM) measurements and general agreement with SM predictions

- S. Chekanov (ANL)
- For the ATLAS Collaboration
- SEARCH 2016 31 August - 2 September 2016 Oxford, UK

Standard Model measurements (and how they are related to the Search 2016 workshop)

- Searches:
 - Act of searching for signatures of new physics (can use SM predictions)
 - Bumps are favorite signatures (do not require detailed understanding of backgrounds)
 - Generally, does not question the degree of validity of the SM (data-driven background)
 - Binary output:
 - Yes

 \rightarrow statistical limits on possible signatures

SM measurements:

- Systematic comparisons of data with SM predictions
- Typically require "truth-level" (unfolded) results (i.e. free from detector effects)
- Multiple outputs:
 - "Agrees" OR "Reasonably agrees but some deviations are seen"
 - Disagrees, but we know how to fix it. Use different model!
 - Disagrees, no SM processes explaining data. Optimize cuts for searches

ATLAS detector in Run 2

Exceptional LHC performance in 2016

- Most new results use 3-15 fb⁻¹ of data (before ICHEP16)
- Prel. luminosity uncertainty is ± 2.9% (2015+2016)

Mean Number of Interactions per Crossing

Testing Standard Model at the LHC (theory)

Standard Model - theory concerning the electroweak (EWK) and strong (QCD) interactions

Scope of the SM tests at the LHC:

Testing Standard Model at the LHC (experiment)

<u>SM Tests:</u>

- LO matrix elements
- LL parton showers (PS)
- models for soft QCD
- consistency in tunings

<u>SM Tests:</u>

- NLO QCD (O(α_s^3))
- running $\alpha_{_S}$
- PDF
- LO QCD $O(\alpha_s^2)$ +PS

<u>SM Tests:</u>

- NLO, NNLO QCD, NLL etc
- resummed calculations
- PDF
- LO QCD $O(\alpha_s^2)$ +PS

SM measurements in ATLAS. S.Chekanov (ANL)

5

SM predictions in Monte Carlo simulations

1

- Parton level (often require "hadronisation" correction):
 - **MCFM:** fixed-order NLO \rightarrow vector bosons etc.
 - **BLACKHAT+SHERPA** : NLO fixed order pQCD (up to 4p) \rightarrow vector bosons etc.
 - Jetphox: Fixed-order NLO QCD \rightarrow photons
 - **PeTeR**: resummed NNLO (NNNLL accuracy) \rightarrow *photons*
 - **NLOjets++:** Fixed-order NLO QCD \rightarrow *jets*
 - **FEWZ, DYNNLO, Njetti** *etc. NNLO calculations for vector bosons*
- Event generators at hadron/particle level:
 - **PYTHIA6/8:** LO ME with parton showers general-purpose generator
 - **HERWIG++:** LO ME with parton showers general-purpose generator
 - ALPGEN: Tree level multipartons (up to 5p) at LO QCD+ Parton Shower
 - SHERPA: Tree level multipartons (up to 5p) at LO QCD + Parton Shower
 - MADGRAPH+PYTHIA/HERWIG:
 - LO Matrix Element + Parton Shower tree level multipartons up to 5p
 - NLO (up to 2 partones) + Parton Shower for high-orders
 - MC@NLO+HERWIG: NLO + Parton Shower
 - **POWHEG+PYTHIA:** NLO + Parton Shower

State of the art:

Parton level: NNLO, resummed logs Hadron level: NLO+PS, LO tree level (5p)

Soft QCD - I

- $|\eta| < 0.2$ Charge particles reflect non-perturbative ATLAS Data PYTHIA8 A2 region of QCD 6 **PYTHIA8 Monash** $1/N_{ev} \cdot dN_{ch} / d\eta$ Use LO+PS "tunable" Monte Carlo models ····· EPOS LHC **QGSJET II-04** 500 MeV, non 26 $p_{T} = 100 \text{ MeV}, n_{ch}$ 13 TeV. 170 μb⁻¹ 7500 MeV, nonZ Data unfolded to reduce effects Track reconstruction efficiency ATLAS 🗕 Hinimum Bias MC from detector $\geq 1, p_{-} > 500 \text{ MeV}, |\eta| < 2.5$ 0.88 acceptance 0.86 0.84 0.82 τ > 30 ps (extrapolated) 0.8 10³ 10^{4} 10 $p_{_{T}}$ [GeV] √*s* [GeV]
- Models:
 - PYTHIA8 with different tunes (+ single and double diffraction)
 - QGSJET (Reggeon field theory framework)
 - EPOS (Gribov-Regge effective theory for hard and soft QCD) \rightarrow best description

Soft QCD - II

- Differences between MC models and the measured distributions
- EPOS simulation describes the data best
- Preferred over general-purpose Pythia8
 - Better tune for Pythia8 required?

 Data guide constructions of such models and gives feedback for model builders

\rightarrow Reveals the basic problem for discoveries using SM measurements \rightarrow Need models built from first principles!

Measurements of the ridge at 13TeV

- A matter of considerable debate
- pp Monte Carlo generators do not include it
- Amplitude extracted using a Fourier analysis is similar for 13 TeV and 2.76 pp energy
- Ridges in pp and p+Pb arise from a similar physics?

- Probe of perturbative (pQCD) at small distances ~ $1/E_{T} \sim 10^{-19}$ m
- Straightforward comparison with theory
 - Testing QCD matrix elements & parton-density functions (PDF)
 - Reliable calculations at NLO QCD (NLOJet++)
- Simple observables
 - \rightarrow Resonant-type enhancements mean discovery*

Hard QCD: Jets

ATLAS JHEP02(2015)153, ATLAS-CONF-2016-092

> 0.9 0.8

0.7E 0.6

2×10

3×10

10 p_[GeV]

11

- Data are consistent with NLO QCD up to pT=3 TeV
- Sensitivity to PDF is observed
- Largest systematics: Jet Energy Scale at large pT

Inclusive Jet Cross Section Measurements

Status: Nov 2015

Good agreement with NLO QCD (NLOjet++, CT10 PDF)

Multijet cross sections

ATLAS, JHEP 12 (2015) 105 http://arxiv.org/abs/1509.07335

- At least one jet with E_{T} >100 GeV
- Other 3 jets E_{T} >64 GeV

- Feynman diagrams require several vertices even at leading-order (LO) in α_s
- Exceptionally strong test of QCD ME
 - Example: Madgraph has ME up to 4 partons
- NLO NJet/Sherpa and BlackHat/Sherpa calculations agree well with the data
- Madgraph & LO+PS describe shapes too, but require additional normalization

Particle multiplicity inside jets

ATLAS Eur. Phys. J. C76(6), 1-23 (2016)

- Important jet property
- Sensitive to quark/gluon differences and α(s)
- PS Monte Carlo simulations indicate sensitivity of data to α_s ("Monash vs A14) and treatment of underlying event (HERWIG)
- Limitation for claiming new physics due to "tunability" of generators

Single- and jet-associated boson production (V+jets)

- Testing EWK and perturbative QCD
- Constraining backgrounds for searches
- Better theoretically understood than jets (~1-2% precision at NNLO QCD)
- Simple environment to test SM (electron, photon and muon signatures)

SM total production cross section measurements

Standard Model Total Production Cross Section Measurements Status: August 2016

Inclusive production

 $\frac{\overline{\Sigma}}{\overline{P}} p \rightarrow t\overline{t}$ 7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C 74:3109 (2014) 13 TeV, 3.2 fb⁻¹, arXiv:1606.02699 **a** $pp \rightarrow tq$ 7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2014-007 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2015-079 **b** $pp \rightarrow WW$ 7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, arXiv:1608.03086 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2016-090 **c** $pp \rightarrow WZ$ 7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, arXiv:1606.04017 **c** $pp \rightarrow H$ 7 TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb⁻¹, ATLAS-CONF-2016-081

△ $pp \rightarrow \angle \angle$ 7 TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2013-020 13 TeV, 3.2 fb⁻¹, PRL 116, 101801 (2016)

Good agreement with state-of-the-art predictions

Inclusive photons

- QCD tests in clear environment
 - ME LO, NLO, resummations
 - Parton density functions (PDF)
- Direct Compton is the dominant process at the LHC (~80%)
 - CDF: $pT(\gamma)>100$ Direct annihilation
- Available models:
 - Jetphox (NLO)
 - PeTeR (NLO+resummed logs)

First measurement of photons above 1 TeV

SM measurements in ATLAS. S.Chekanov (ANL)

- Use data-driven subtraction method

ATLAS (2016) http://arxiv.org/abs/1605.03495

Inclusive photons-II

- JetPhox (NLO) shows some difference in shape. Waiting for NNLO!
- PeTer: Resummed logs to NNNLL accuracy + leading electroweak Sudakov logs
 - improvements in shapes! Also see arXiv:1606.02313 (M.Schwartz)

W boson cross sections

- Testing electroweak (EWK) + QCD
- Drell-Yan process is best known at the LHC
 - Quark initiated
 - NNLO QCD predictions (DYNNLO & FEWZ)
 - EW corrections up to NLO accuracy
- Simple signatures: transverse energy for $W \rightarrow I v$

ATLAS

http://arxiv.org/abs/1603.09222

W production via Drell-Yan process

Good agreement with NNLO predictions

SM measurements in ATLAS. S.Chekanov (ANL)

20

$Z \rightarrow l+l-$ boson cross sections

ATLAS Phys. Lett. B 759 (2016) 601

0.9

0.85

W

 W^+

 W^{\pm}

Ζ

Vector bosons + X

General good agreement between data and SM

1-2 sigma excesses deserve future attention by theorists / new measurements

Z+jets production Differential cross sections

ATLAS ATLAS-CONF-2016-046

- Hard pT spectrum for ALPGEN+Pythia6 (LO+PS) for Z+1 jet
- Significantly improved description by ME+PS@NLO generators (Sherpa 2.1 and MG5_aMC+Py8 FxFx) which use NLO matrix elements for up to 2 additional partons

Multi-boson production (>1 boson)

- Clean experimental signatures
- Well-understood predictions (i.e. NLO, NNLO)
- Irreducible background for Higgs physics
- Sensitivity to anomalous triple gauge couplings (aTGC)

Multiboson production: Zy and Zyy

SM measurements in ATLAS. S.Chekanov (ANL)

ATLAS Phys. Rev. D 93, 112002 (2016)

- Dominated by initial/final state photon radiation
- SM tests: NLO & NNLO ME
- Irreducible background for $H \rightarrow Z \gamma$

Beyond the Standard Model: *Triple- and quadratic gauge coupling?*

Multiboson production: Zy and Zyy

ATLAS Phys. Rev. D 93, 112002 (2016)

"' Data 8.0 Data

0.6

50

- Reasonable agreements with NNLO
- Also good agreements for I+I-yy (low statistics)

110 135 170 210 270 350

470 640 2000

m_{l⁺iγ} [GeV]

Multiboson production: ZZ

ATLAS Phys. Rev. Lett. 116, 101801 (2016)

- Measurements in the fiduciual region using lepton channels ($ZZ \rightarrow 4$ leptons)
- Stringent test of the EWK sector of SM
- Background for Higgs, sensitive to triple neutral-gauge coupling
- Good agreement with NNLO ($\sim O(\alpha_s^2)$)

Multiboson production: W⁺ W⁻

- Test EWK physics at TeV scale
- Probe gauge-boson self-couplings
- Irreducible background for Higgs searches

- Use leptonic decays (I+v)
- Use MC (at NNLO) to estimate background
- Unfold cross sections and compare to NLO/NNLO
- Data are ~1.4 sigma higher compared to NLO
 - due to pT(e/mu)~50 GeV region
- Agrees with NNLO+resummation (~10% higher)

Final state	Total cross section $pp \rightarrow WW$ [pb]
еμ	$70.6\pm1.3(\text{stat}) \stackrel{+5.8}{_{-5.1}}(\text{syst}) \pm1.4(\text{lumi})$
ee	$73.6^{+4.2}_{-4.1}(\text{stat}) {}^{+7.5}_{-6.4}(\text{syst}) \pm 1.5(\text{lumi})$
μμ	74.0 \pm 3.0(stat) $^{+7.1}_{-5.9}$ (syst) \pm 1.5(lumi)
Combined	71.1 \pm 1.1(stat) $^{+5.7}_{-5.0}$ (syst) \pm 1.4(lumi)
σ (NNLO _{tot}) theory prediction [3]+[45]	$63.2^{+1.6}_{-1.4}$ (scale) ± 1.2 (PDF)

SM measurements in ATLAS. S.Chekanov (ANL)

ATLAS

Ratio of predictions to measurement

Multiboson production: W⁺ W⁻

ATLAS ATLAS-CONF-2016-090

- Using 2015 runs (13 TeV). Decay ev and µv channels combined
- Use NNLO (~O(α^2)) to estimate background plus $gg \rightarrow H \rightarrow WW$

Cross section ratio (13 TeV / 8 TeV)

SM measurements in ATLAS. S.Chekanov (ANL)

Data

Powheg

1.8

theory

ATLAS

WZ cross section in 13 TeV data

ATLAS ATLAS-CONF-2016-043

- Data are ~2 sigma above NLO (Powheg)
- Good agreement with NNLO

Exclusive W⁺ W⁻ production

ATLAS hep-ex > arXiv:1607.03745

- Clean events: 2 leptons + missing ET
- Exclusivity achieved by selecting events with 2 tracks associated with leptons

Exclusive W^+W^-	event yields:	Data=23,
Background = 8.3	\pm 2.6, Signa	$I = 9.3 \pm 1.2$

- ~3 σ evidence for exclusive W+W- production
- No evidence for exclusive Higgs
- Statistically limited measurement

Top production

- Heaviest elementary particle
- Key for fundamental interactions at the EWK breaking scale at beyond
- Core tests of pQCD:
 - Well-understood predictions available at NLO, NNLO + resummations
- Irreducible background for many searches

Inclusive top cross sections

ATLAS ATLAS-CONF-2016-005

34

- Unlike TEVATRON, dominated by $gg \rightarrow t\bar{t}$ process at the LHC (~80%)
- First 13 TeV ATLAS measurements are based on electron-muon final state + b-jet
 - golden channel used in early top-quark discoveries at TEVATRON
- Good agreement with NNLO+NNLL predictions

Top pair & single-top cross sections

SM measurements in ATLAS. S.Chekanov (ANL)

35

Direct top mass measurements

m_t = 172.84 ± 0.70 GeV (largest systematics: MC modeling and jet energy scale) Combined with CMS: 172.44 ± 0.48 GeV Tevatron combination: 174.30 ± 0.65 GeV

Not covered: testing Standard Models in Searches

- SM measurements used for searches
- ... and many search papers include SM measurements do not miss them!
 - Even if search results do not have unfolded distributions, many give good assessment of the level of possible discrepancies with the SM

Example from a search paper ATLAS-CONF-2016-060:

 Good description of the shape of dijets (b-jets) invariant mass by LO+PS Pythia8 simulation

Summary

- SM measurements are important on their own + foundation for New Physics searches
- Precision SM tests are enabled by an excellent performance of the ATLAS detector
- Impressive agreements of ATLAS data with the SM predictions across several orders of magnitude in transverse energies
- Uncertainties ~7% for QCD measurements and unprecedented precision for EWK measurements (1-2%)

Time for precision measurements:

- If there is a new physics at the EWK scale ~ 1 TeV, it must be within the level of uncertainties currently seen for the SM measurements
- Most of 2015/2016 data need to be analyzed \rightarrow improved precision is expected

The grandest discoveries of science have been but the rewards of accurate measurement and patient long-continued labour in the minute sifting of numerical results. Lord Kelvin

More science quotes at Today in Science History todayinsci.com

Backup

