

SEARCH 2016 Matt Strassler (Harvard)

SEARCH 2016 Matt Strassler (Harvard)

Slow-Growth Era of LHC

Statistical improvements will be slow,

starting soon... well, now...

How to make rapid progress?

- Unconventional searches
 - David Curtin's talk
 - If it's never been done before... (or not since 2011)... who knows?
- Precision (or "high sensitivity")
 - Reducing theoretical & systematic uncertainties on existing searches
 - Planning new searches that weren't previously worth doing

Bulk of a Distribution?

Here:

- Project full space of final states onto a variable or two
- Don't just look on the tail for deviations from prediction

Reasons:

- While there has been a lot of focus for searches on
 - High mass
 - High p_T
 - High MET

of course many phenomena can show up lower in the plot

- Especially true now as limits on heavy particles begin to max out
 - Precision era means access to EW production, other rare processes
 - SM precision tests (needed for later BSM) demand high statistics

Don't Let the Tail Wag the Dog

Inclusive is not Conclusive

Physics Hidden in Inclusive Distributions

In various models (common in hidden valleys/dark sectors)

MJS & Zurek '06 Han,Si,Zurek & MJS '07

- Rare or unusual production of new neutral particle
- Bump, edge, endpoint, dip, wiggle is present
 - but swamped in inclusive background

Rare, prompt, light dilepton resonance along with hard jets

This happens in the SM too

Higgs to bb can't be seen inclusively either

- So do a semi-exclusive search... cut background much more than signal
 - VH (require MET/lepton, maybe mild boost)
 - Or... from Guillemin talk

ATLAS-CONF-2016-063

Analysis key points

- H→bb VBF analysis (not in association with a photon) performed in Run 1 (sensitivity ~5 times the SM)
- Topological 4-jet+γ trigger signature implemented at Level-1 for Run 2
- Gluon-induced component of the dominant non-resonant bbjjγ suppressed
- BDT against the non-resonant background: m_{bb} fits in 3 BDT regions

Physics Hidden in Inclusive Distributions

In various models (common in hidden valleys/dark sectors)

- Rare or unusual production of new neutral particle
- Bump, edge, endpoint, dip, wiggle is present
 - but swamped in inclusive background
- Point:
 - Higgs → bb resonance is invisible in inclusive production
 - But a semi-exclusive search can reveal it
 - The selection criterion reduces background, keeps signal
- We should do this for other resonance searches as a matter of course!

Inclusive is not Conclusive

Inclusive

Inclusive is not Conclusive

Inclusive

Require 4 jets and high HT and... presto!

Physics Hidden in Inclusive Distributions

The method of semi-exclusive searches is general:

- Resonances: X → diphotons, di-b, di-tau, triphoton, ...
- Edge/Endpoints: X → di-object + MET
- Other structures: X interferes and creates wiggle or dip

Any such effect can be searched for

- Inclusively
- Semi-exclusively
 - And Higgs → bb shows why we have to do it!
 - Otherwise we are giving up some easy opportunities...

Systematic approach?

Physics Hidden in Total Cross Sections

Some BSM processes might contribute to SM cross-sections

- Electroweakinos contributing to WW
- Lisanti & Weiner '11; Feigl, Rzehak & Zeppenfeld, '12; Curtin, Jaiswal, Meade, Tien '12,'13,'14; Rolbiecki & Sakurai '13
- Stop → top + low mass neutralino near threshold adds to tt Czakon, Mitov, Papucci, Ruderman & Weiler '14
- Stop → bino → wino contributes to ttW, tth,...

```
Cf. Huang, Ismail, Low & Wagner '15; Angelescu, Djouadi & Moreau '15; ...
```

Are we properly cross-correlating all our measurements?

- Sidestep?
 - Spin effects:
 - the SM violates C and P maximally, BSM might be different

e.g. Han, Katz, Krohn & Reece '12

Ratios at different LHC collision energies

Old strategy:

- Compare physics at two values of s at same value of ŝ/s = x₁ x₂
 - Pdfs almost the same
 - Partonic process changes (but often SM prediction scales with s)

Mangano & Rojo '12

- Compare physics at two values of s at same value of \$
 - Partonic process almost the same
 - Pdfs change

Ratios at different LHC collision energies

Old strategy:

- Compare physics at two values of s at same value of \$/s = x₁ x₂
 - Pdfs almost the same
 - Partonic process changes (but often SM prediction scales with s)
 - But if a threshold between x₁ x₂ s_{low} and x₁ x₂ s_{high} then ...

Mangano & Rojo '12

- Compare physics at two values of s at same value of ŝ
 - Partonic process almost the same
 - Pdfs change

Ratios at different LHC collision energies

Old strategy:

- Compare physics at two values of s at same value of s/s = x₁ x₂
 - Pdfs almost the same
 - Partonic process changes (but often SM prediction scales with s)

Mangano & Rojo '12

- Compare physics at two values of s at same value of \$
 - Partonic process almost the same
 - Pdfs change
 - But if a process subleading at s_{low} comes from different pdf...

14 TeV -----8 TeV

Ratio	R^{nnpdf}	$\delta_{\mathrm{PDF}}(\%)$
t ar t/Z	2.12	1.3
$t ar{t}$	3.90	1.1
Z	1.84	0.7
W^+	1.75	0.7
W^-	1.86	0.6
W^+/W^-	0.94	0.3
W/Z	0.98	0.1
ggH	2.56	0.6
$t\bar{t}(M_{tt} \ge 1 \text{ TeV})$	8.18	2.5
$t\bar{t}(M_{\rm tt} \ge 2 {\rm TeV})$	24.9	6.3
$\sigma_{\rm jet}(p_T \ge 1 {\rm ~TeV})$	15.1	2.1
$\sigma_{\rm jet}(p_T \ge 2 {\rm ~TeV})$	181.6	7.7

Mangano-Rojo '15

<1% - 7% variations with pdf, depending on ratio

Small variations among pdfs

$$\Delta_{E_1/E_2}(A) = 1 - \frac{A(E_2)}{A(E_1)}$$

Suppose there's a broad resonance at 1.5 TeV producing tt-bar

At fixed s-hat, much more gg at 13 TeV than at 8 TeV; so qq-bar process suppressed

Thus precise predictions for ttbar at 13 vs 8 TeV will fail

Improvement: cancel luminosity uncertainty using ttbar/Z at the two energies.

Charge Asymmetries at the LHC

- Charge asymmetries arise from valence quarks
 - They measure degree of valence quark contribution to a process
 - (Or parity violation *subtle point…*)
- These change as the center of mass energy changes and the rates (for particular event selections) should be well-predicted
 - Especially if we can normalize them intelligently to W* or W+j
- Useful in checking single top
- Would be useful in diagnosing BSM
- So energy ratios of charge asyms probably good as precision variables

Physics Hidden By Control Regions

- Away from tails, deviations typically not statistics limited
- Systematic uncertainties from control-to-signal extrapolation
 - How can these be reduced?
 - Attempts at precision measurements in control regions
 - Using theory at higher order to transfer to signal region
 - Additional questions (data and theory) in validation regions?

- Large logs can appear in signal regions that are absent in controls?
 - Logs of HT/p_T^{min}
 - EW Sudakov corrections...
- Case studies??

Ratios on the Backbone

Play off statistical uncertainties versus systematic and theory uncertainties

- Tails give us highest-E sensitivity (but do we understand the tail?)
- Backbones give us highest level of control

For a dimension-six operator, tails, backbones and heads are comparable

Cf. discussion following Mangano talk – they become complementary.

Tails win in dimension-8

For low-mass physics, backbones may win

- Wide resonance/wiggle
- Off-shell Higgs effects at high mass

Dibosons

Production of any pair of photon, Z, W[±] (except same sign)

- Discrepancies have shown up or not...
- Tails have low statistics; Head has resummation subtleties
- What ratios/variables might help on the backbone?
- Put high-energy $SU(2) \times U(1)$ structure to use
 - Leading-order (tree-level) partonic-level into nicer form
 - Notice useful ratios, show they are still useful in pp collisions
- Proceed to realistic situation for two neutral bosons
 - Show corrections beyond leading order are small at high energy
 - NIO
 - gg-induced NNLO
 - Show remaining uncertainties are small
- All results below using MCFM Monte Carlo Campbell, R.K.Ellis

$$a_1 \propto \mathcal{M}(xx) \propto \mathcal{M}(wx) \propto \mathcal{M}(ww_1)$$
, t,u $a_3 \propto \mathcal{M}(ww_3)$, s,t,u $a_{\phi} \propto \mathcal{M}(\phi\phi)$,

$$SU(2) \ w^a \ (a=1,2,3), \ U(1) \ x$$
• up to $(m_7/E)^2$ terms

$$\gamma = c_W x + s_W w^3,$$

$$Z = c_W w^3 - s_W x,$$

$$a_1 \propto \mathcal{M}(xx) \propto \mathcal{M}(wx) \propto \mathcal{M}(ww_1)$$
,

$$a_3 \propto \mathcal{M}(ww_3)$$
,

$$a_{\phi} \propto \mathcal{M}(\phi\phi)$$
,

$$|a_{1}|^{2} = \frac{\hat{t}}{\hat{u}} + \frac{\hat{u}}{\hat{t}},$$

$$(a_{1}a_{3}) = \left(\frac{\hat{t} - \hat{u}}{2\,\hat{s}}\right) + \frac{1}{4}\left(\frac{\hat{t}}{\hat{u}} - \frac{\hat{u}}{\hat{t}}\right),$$

$$|a_{3}|^{2} = \frac{\hat{t}\hat{u}}{4\,\hat{s}^{2}} - \frac{1}{8} + \frac{1}{32}\left(\frac{\hat{t}}{\hat{u}} + \frac{\hat{u}}{\hat{t}}\right),$$

$$|a_{\phi}|^{2} = \frac{\hat{t}\hat{u}}{4\,\hat{s}^{2}}.$$

ZZ, $Z\gamma$, $\gamma\gamma$ at Leading Order (@LO)

$$|a_1|^2 = \frac{\hat{t}}{\hat{u}} + \frac{\hat{u}}{\hat{t}},$$

$$\frac{d\hat{\sigma}}{d\hat{t}}(q\bar{q} \to V_1^0 V_2^0) = \frac{C_{12}^q}{\hat{s}^2} |a_1|^2,$$

$$C_{\gamma\gamma}^{q} = \frac{1}{2} \frac{\pi \alpha_{2}^{2} s_{W}^{4}}{N_{c}} 2Q^{4},$$

$$C_{Z\gamma}^{q} = \frac{\pi \alpha_{2}^{2} s_{W}^{2} c_{W}^{2}}{N_{c}} (L^{2}Q^{2} + R^{2}Q^{2}),$$

$$C_{ZZ}^{q} = \frac{1}{2} \frac{\pi \alpha_{2}^{2} c_{W}^{4}}{N_{c}} (L^{4} + R^{4}).$$

Couplings to
$$Z$$
 :
$$L \ = \ T_3 - Y_L \, t_W^2 \,, \qquad R \ = \ - Y_R \, t_W^2 \,$$

ZZ, Zγ, γγ at Leading Order (@LO)

$$\frac{d\hat{\sigma}}{d\hat{t}}(q\bar{q} \to V_1^0 V_2^0) = \frac{C_{12}^q}{\hat{s}^2} |a_1|^2,$$

$$C_{\gamma\gamma}^{q} = \frac{1}{2} \frac{\pi \alpha_{2}^{2} s_{W}^{4}}{N_{c}} 2Q^{4},$$

$$C_{Z\gamma}^{q} = \frac{\pi\alpha_{2}^{2}s_{W}^{2}c_{W}^{2}}{N_{c}} \left(L^{2}Q^{2} + R^{2}Q^{2}\right) \,,$$

$$C_{ZZ}^q = \frac{1}{2} \frac{\pi \alpha_2^2 c_W^4}{N_c} \left(L^4 + R^4 \right) .$$

Couplings to Z:

$$L = T_3 - Y_L t_W^2, \qquad R = -Y_R t_W^2$$

ZZ, Zγ, γγ at Leading Order (@LO)

$V_1^0 V_2^0$	$C_{12}^u \cdot 10^5$	$C_{12}^d \cdot 10^5$
$\gamma\gamma$	1.2	0.07
$Z\gamma$	2.2	0.7
ZZ	1.6	3.3

uu dominates;PDF uncertaintiesshould cancel

$$\frac{d\hat{\sigma}}{d\hat{t}}(q\bar{q} \to V_1^0 V_2^0) = \frac{C_{12}^q}{\hat{s}^2} |a_1|^2,$$

$$C_{\gamma\gamma}^{q} = \frac{1}{2} \frac{\pi \alpha_{2}^{2} s_{W}^{4}}{N_{c}} 2Q^{4} ,$$

$$C_{Z\gamma}^{q} = \frac{\pi \alpha_{2}^{2} s_{W}^{2} c_{W}^{2}}{N_{c}} \left(L^{2} Q^{2} + R^{2} Q^{2} \right) ,$$

$$C_{ZZ}^{q} = \frac{1}{2} \frac{\pi \alpha_{2}^{2} c_{W}^{4}}{N} \left(L^{4} + R^{4} \right) .$$

Couplings to Z:

$$L = T_3 - Y_L t_W^2, \qquad R = -Y_R t_W^2$$

32

Charge asymmetries for $W\gamma$, WZ are related

Determined by the pdfs for both sym, antisym FB quantities

Beyond Leading Order?

- What about higher-order corrections?
 - QCD cancellations?
 - How large are the shifts in the ratios?
 - SU(2)xU(1) relations should help -- Where do they fail?
 - What uncertainties remain?
 - EW corrections Partial cancellations?
- Big issue: the radiation zero
 - Where important, LO SU(2)xU(1) relations may receive large corrections
- Start with γγ, Zγ, ZZ
 - No radiation zero
 - Events fully reconstructed (Z → leptons ONLY here)
 - Good statistics for first two

ZZ, $Z\gamma$, $\gamma\gamma$ at LO \rightarrow NLO

Must choose observable carefully to avoid large NLO corrections

$$\overline{m}_T = \frac{1}{2}[m_{T1} + m_{T2}] = \text{min energy at } 90^{\circ} \text{ scattering}$$

- Radiation cannot reduce this variable
 - so no region of NLO phase space is secretly LO.

ZZ, $Z\gamma$, $\gamma\gamma$ at LO \rightarrow NLO

- Need to choose cuts carefully to avoid large NLO corrections
 - Assure cuts select kinematics similar to LO
 - i.e. no vector bosons softer than jets (cf. giant K factors)
 - But do not impose drastic jet veto
- We take

ZZ, $Z\gamma$, $\gamma\gamma$ at LO \rightarrow NLO

• QCD corrections treat Z, γ identically, largely cancel...

- ...except...
 - Collinear quark-boson regime
 - Photon has log enhancement
 - Z has no enhancement

Gluon fusion process (formally NNLO but numerically large)

- Both of these driven by gluon pdf
 - Both decrease in importance at high energy

NLO/LO K factors

NNLO gg / NLO partial K factor

- To set scale on gg use partial knowledge of NNNLO gg correction
 - (backup slide)

PDF Uncertainties

- Much smaller in ratios
 - 1 − 2 %
 - Especially for $Z\gamma / \gamma\gamma$

Scale [next-order] uncertainties

Estimates NNLO corrections to what is already present at NLO

• Does not account for new channels (e.g. $q \neq q \vee V \sim 2-3\%$)

Experimental effects

- Some experimental issues cancel
 - Luminosity
 - Jet energy scale
- Some don't:
 - Z → leptons leptons have their own cuts, acceptance
 - Or → neutrinos -- other issues
 - Can be a substantial effect at low pT
 - But can model, measure with low absolute uncertainty
 - Z finite width [experimental definition of "Z"]
 - Not large effect
 - Can model

Uncertainty budget

Effect	R_{1a}	R_{1b}	R_{1c}	Comments
	$(Z\gamma/\gamma\gamma)$	$(ZZ/\gamma\gamma)$	$(ZZ/Z\gamma)$	
$\boxed{ qq \to VVqq}$	2-3%	3-3.5%	1.5 – 2.5%	extrapolating $p_{T,\min}^j \to 0$ (Sec. 4.2)
$\mu_R, \mu_F \ (gg)$	0.5 – 1%	1%	1-2%	uses NLO $gg \to \gamma \gamma$ (Sec. 4.5)
$\mu_R, \mu_F \text{ (NLO)}$	0.5– $1%$	1.5 – 2.5%	11.5%	varied independently (Sec. 4.5)
PDF	0.5%	1 - 1.5%	0.5 – 1%	MSTW 2008 using MCFM (Sec. 4.5)

L	-		I		1	J
	NLO EW	$^{+2\%}_{-1\%}$	$+3\% \\ -1\%$	$^{+2\%}_{-1\%}$	EFT scale uncertainty (Sec. 4.4.1)	

Possible Improvements:

- Use Z → neutrinos?
- Use $Z \rightarrow jets??$
- At 3000 fb⁻¹, tens of bins, last bin probes > 1.2 TeV at 5%

The other ratios, at 3000 fb⁻¹

Probably want to include Z \rightarrow neutrinos at price of higher theoretical uncertainty.

Compare backbone to tails

- If you're looking for dimension-6 BSM effect, tail and backbone similar sensitivity.
 - Pdf luminosity roughly falls with a power of s
 - Dim-6 effect roughly grows with power of s
- Unfortunately (to be confirmed) anomalous gauge couplings are
 - Dimension six (longitudinal bosons) but suppressed
 - Dimension eight
- But even if this particular effect only on tails,
 - Precise diboson MC can be tested using ratios
 - Electroweak effects (big on tails) can be tested without much QCD pollution
- And other BSM effects can appear on the backbone

Conclusions

- It's not whether to look in the bulk, but how best to do it
 - High statistics can be in your favor, if you can reduce systematics
 - High statistics can be against you; cut wisely (go onto an orthogonal tail)
- Look for buried treasure (inclusive is not conclusive)
- Compare 8 TeV and 13 TeV cleverly (cross-sections; charge asyms?)
- Control the control regions (and the transfer to signal regions)
- New EW/hidden/rare physics requires high precision in bulk
 - Exercise: get high precision in diboson ratios at p_T >> M_W
 - Ratios: small QCD corrections & uncertainties at high energy
 - Certainly good for SM studies (MC and EW)
 - Need still to learn more about how sensitivity to BSM is improved
 - Searches on high-E tails vs. precision at moderate E

Scale setting for gg loops

• For $gg \rightarrow \gamma\gamma$

For the other processes

$$K_{gg} \equiv \frac{d\sigma_{(3)}(gg \to \gamma\gamma)}{d\sigma_{(2)}(gg \to \gamma\gamma)} \approx \frac{d\sigma_{(3)}(gg \to Z\gamma)}{d\sigma_{(2)}(gg \to Z\gamma)} \approx \frac{d\sigma_{(3)}(gg \to ZZ)}{d\sigma_{(2)}(gg \to ZZ)}$$