THE VFAT

What is the VFAT

- VFAT is a front-end chip designed specifically to read out the Roman Pot silicon detectors of the Totem experiment
- It is a digital on/off chip, with an adjustable threshold for each of the 128 channels.
- It was decided to use it in all the Totem detectors, the GEMs and the CSCs to simplify the DAQ and trigger design
- For the gas detectors a special version has been developed with an internal protection diode network for each of the 128 input channels.

VFAT block diagram

• The internal registers to set up are 128. • An I2C line with 2 serial signals, SČL/SDA, allows read nad write operations of all the registers The power cycle is described in this flow chart.

The input stage

The R/O latency

The R/O serial frame

The data out is serial, an LVDS DATA_OUT signal and a DATA_VALID synchronization signal are used to readout the frame. The frame is 192 bits long and is read at 40 MHz speed.

Trigger sectors

Self triggering operations are foreseen, and there are 8 output bits hat can be programmed as described in the tables below.

TrigMode(2)	TrigMode(1)	TrigMode(0)	Function		
0	0	0	No Trigger (default)		
0	0	1	One sector (S1)		
0	1	0	Four sectors (S1 to S4)		
0	1	1	Eight sectors (S1 to S8)		
1	х	х	GEM mode (S1 to S8 as defined in table 10)		

	GEM mode channel assignment								
l	Sector	Channel assignment to sector							
Î	S1	4	28	52	76	100			
		5	29	53	77	101			
H		6	30	54	78	102			
		7	31	55	79	103			
	S2	8	32	56	80	104			
		9	33	57	81	105			
		10	34	58	82	106			
U	S3	11	35	59	83	107			
		12	36	60	84	108			
H		13	37	61	85	109			
	S4	14	38	62	86	110			
		15	39	63	87	111			
		16	40	64	88	112			
	S 5	17	41	65	89	113			
		18	42	66	90	114			
		19	43	67	91	115			
U	S6	20	44	68	92	116			
		21	45	69	93	117			
		22	46	70	94	118			
	S7	23	47	71	95	119			
		24	48	72	96	120			
		25	49	73	97	121			
	S8	26	50	74	98	122			
		27	51	75	99	123			

The readout electronics

- For the Totem experiment a CMS-like chain has been developed in order to be compatible with the larger hosting experiment.
- Rad hard chips are used to withstand the large radiation foreseen on all the detectors areas.
- The chain is connected to the counting room through fiber optic lines using the same hardware developed by CMS experiment.

Test Beam operations

- We are developing a simple board, hosting 8 separate Hybrids with one VFAT each.
- The board is connected through 50 pins ERNI connectors to the Hybrids
- One single FPGA (Altera StratixII) is responsible for all the operations, generating the I2C protocol and controls the trigger and readout of the chips.
- The communication with the computer is dome via USB2 connection

Extension of TB board

- The TB board has the possibility to daisy chain with other boards, for a total of 8 of them, in order to control up to 64 chips, for a total of 8320 input channels with one USB line
- More USB connections can be added to expand the system to larger objects
- The Board is foreseen for the summer Test Beam.