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Spectral triples

� Definition: A spectral triple (A,H,D) consists of a ∗-algebra A
represented as bounded operators on a Hilbert space H, and an
unbounded self-adjoint operator D : domD → H such that

� The commutators [D, a] extend to bounded operators on H for all a ∈ A;
� The operators a(1 +D2)−1/2 are compact for all a ∈ A.

� A complete Riemannian spin manifold (M, g) gives a spectral triple(
C∞

c (M), L2(S), /D = ∑
j

γ(ej)∇S
ej

)
.

� An abstract spectral triple can be viewed as a ‘noncommutative
Riemannian manifold’.
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Lorentzian spectral triples

� Spectral triples can describe Riemannian manifolds but not Lorentzian
manifolds (i.e., spaces but not spacetimes).

� Many possible definitions of ‘Lorentzian spectral triples’; it is not clear
which is the ‘right one’.

� Idea: give explicit construction instead of abstract definition.

� Mimic decomposition of spacetime into spacelike hypersurfaces.

� The construction should also work in Riemannian signature.
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Spacetimes

� A spacetime is a time-oriented Lorentzian manifold.

� A temporal function on a spacetime (Z, g) is a smooth function Z → R

such that ∇T is timelike and past-directed everywhere.

� A spacetime is stably causal if it admits a temporal function
[Bernal-Sanchez ’05].

� A spacetime is globally hyperbolic if it admits a Cauchy hypersurface.
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Product spacetimes

� Definition: An oriented spacetime (Z, g) is called a product spacetime if
it is of the form (M×R, g• − N2dT2), where

� M× {t} is a smooth spacelike hypersurface;
� the temporal function T is the canonical projection M×R→ R;
� the lapse function N is a smooth map N : M×R→ (0, ∞);
� g• = {gt}t∈R is a smooth family of Riemannian metrics on M.

� We often view N as a family N• = {Nt}t∈R with Nt(x) := N(x, t).
Let ν :=

√
−g(∇T,∇T)

−1∇T be the unit vector field orthogonal to M.

� Example: Every globally hyperbolic spacetime is a product spacetime,
such that each M× {t} is a Cauchy hypersurface [Bernal-Sanchez ’05].

� Every product spacetime is stably causal, but not conversely.
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A product spin spacetime

� Let (Z, g) = (M×R, g• − N2dT2) be a product spacetime of even
dimension n + 1 = 2m with a given spin structure.

� We write Mt := M× {t}. Consider the spinor bundles

S := Spin+
g (Z)×Spin+

1,n
∆1,n, ∆1,n := C2m

= ∆+
n ⊕ ∆−n ,

S±t := Spin+
gt
(Mt)×Spinn

∆±n , ∆±n := C2m−1
.

We have St := S|Mt = S+
t ⊕ S−t , where S+

t ' S−t .

� The Clifford multiplication with respect to (Mt, gt) is given on St by

X 7→ iγ(ν)γ(X) =

(
γMt(X) 0

0 −γMt(X)

)
.

� Let /DMt = ∑j γ(ej)∇St
ej be the canonical Dirac operator on (Mt, gt, S+

t ).

Then − /DMt is the canonical Dirac operator on (Mt, gt, S−t ).
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The Dirac operator

� The Weingarten map W(X) = ∇Z
Xν gives the relation between the

Levi-Civita connections ∇Z and ∇Mt as

g(W(X), Y)ν = ∇Z
XY−∇Mt

X Y,

for vector fields X, Y on Mt.

� The spin connections ∇S and ∇St are related via

∇S
X −∇

St
X = −1

2
γ(ν)γ(W(X)).

� The Dirac operator restricted to Mt can then be written as

/DZ = −γ(ν)∇S
ν − iγ(ν)

(
/DMt 0

0 − /DMt

)
− n

2
Htγ(ν),

where Ht is the mean curvature of Mt.
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The ‘spacelike’ spectral triples

� From the canonical indefinite hermitian structure (·|·) on S we obtain a
positive-definite hermitian structure by

(φ|ψ)pos := (φ|γ(ν)ψ).

� We obtain a Hilbert space L2(S±t ) as the completion of Γ∞
c (S±t ) with

respect to

〈φ|ψ〉pos =
∫

Mt
(φ|ψ)posdvolMt .

� Assume that the metric gt on Mt is complete for each t ∈ R.

� Proposition: (C∞
c (Mt), L2(S±t ),± /DMt) are odd spectral triples (for

each t ∈ R).
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Parallel transport (1)

� For x ∈ M, parallel transport in S along the curves t 7→ (x, t) yields an
isometry τs

t : S(x,t) → S(x,s) w.r.t. the canonical indefinite hermitian
structure on S.

� We then obtain an isometry Ut : Γ∞
c (Mt, St)→ Γ∞

c (M0, S0) given by

(Utψ)(x) := ρtτ
0
t ψ(x),

where we have defined the volume function ρt :=
(
|g0|−1|gt|

) 1
4 .

� For the positive-definite inner product we have

〈Utφ|γ(ν)Utψ〉pos = 〈φ|τt
0γ(ν)τ0

t ψ〉pos.

Therefore Ut is an isometry for 〈·|·〉pos if and only if ∇νν = 0.

� Assume that ν is geodesic, i.e. ∇νν = 0.
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Parallel transport (2)

� Consider the Hilbert space H := L2(M0, S+
0 ). We identify S+

0 with S−0
via γ(ν), and then we can write

γ(ν) =

(
0 1
1 0

)
.

� We define U : Γ∞
c (M×R, S)→ C∞

c (R,H⊕H) by

(Uψ)(t) := N
1
2

t ·Ut
(
ψ|Mt

)
.

Then U is an isometry for both 〈·|·〉 and 〈·|·〉pos, and extends to a
unitary isomorphism U : L2(M×R, S)→ L2(R,H⊕H).

� Under this isomorphism, the covariant derivative ∇S
ν is related to the

time derivative on C∞
c (R,H⊕H) by

U∇S
νU−1 = N−

1
2

t ρt∂tρ
−1
t N−

1
2

t .
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Parallel transport (2)

� Consider the Hilbert space H := L2(M0, S+
0 ). We identify S+

0 with S−0
via γ(ν), and then we can write

γ(ν) =

(
0 1
1 0

)
.

� We define U : Γ∞
c (M×R, S)→ C∞

c (R,H⊕H) by

(Uψ)(t) := N
1
2

t ·Ut
(
ψ|Mt

)
.

Then U is an isometry for both 〈·|·〉 and 〈·|·〉pos, and extends to a
unitary isomorphism U : L2(M×R, S)→ L2(R,H⊕H).

� Under this isomorphism, the covariant derivative ∇S
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The Dirac operator rewritten

� On a hypersurface Mt, the Lorentzian Dirac operator decomposes as

/DZ = −γ(ν)∇S
ν − iγ(ν) /̃DMt −

n
2

Hγ(ν),

where

γ(ν) =

(
0 1
1 0

)
, /̃DMt =

(
/DMt 0

0 − /DMt

)
.

� We have the expression nHt = N−1
t ∂t

(
log |gt|

1
2
)
= 2N−1

t ρ−1
t (∂tρt).

� Under the isomorphism U : L2(M×R, S)→ L2(R,H⊕H), we obtain

U /DZU−1 = γ(ν)

(
−N−

1
2• ρ•∂tρ

−1
• N−

1
2• − i /̃D• − N−1

• ρ−1
• (∂tρ•)

)
where /D• = { /Dt}t∈R with /Dt := U /DMt U

−1.
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The family

� Hence the Lorentzian Dirac operator /DZ can be described (up to unitary
isomorphism) by
� a family of “spatial” Dirac operators { /Dt}t∈R;
� a (family of) lapse function(s) N• = {Nt}t∈R;
� a family of volume functions ρ• = {ρt}t∈R.

� We can assemble these objects into spectral triples(
C∞

c (M0)� C∞
c (R), L2(R,H⊕H), /D±

)
for the Riemannian Dirac-type operators on M×R:

/D± := γ(ν)

(
±iN−

1
2• ρ•∂tρ

−1
• N−

1
2• − iD̃• ± iN−

1
2• [∂t, ρ•]ρ

−1
• N−

1
2•

)
� We can recover the Lorentzian Dirac operator via a “reverse Wick

rotation”:

U /DZU−1 =
1
2
( /D+ + /D−) +

i
2
( /D+ − /D−).
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Families of spectral triples

� Definition: A weakly differentiable family of spectral triples
{(A, πtH,Dt)}t∈R is a family of spectral triples {(A, πtH,Dt)}t∈R such
that the following conditions are satisfied:

� W := DomDt is independent of t, and the graph norms of Dt are uniformly
equivalent;

� the map D• : R→ L(W,H) is weakly differentiable, and its weak derivative
is uniformly bounded;

� the family of representations {πt}t∈R of A on H is weakly differentiable,
and for each a ∈ A the family {πt(a) : W →W} is strongly continuous.
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Lapse and volume operators

� Definition: Given a weakly differentiable family of spectral triples
{(A,H,Dt)}t∈R, we consider a family of lapse operators {Nt}t∈R and a
family of volume operators {ρt}t∈R satisfying the following assumptions:

1 the families of operators {Nt} and {ρt} are positive, invertible, and
uniformly bounded;

2 the operators N
1
2

t and ρt and their inverses preserve the domain W, the

families {N
1
2

t : W →W} and {ρt : W →W} are strongly differentiable and

uniformly bounded, and the inverses {N−
1
2

t : W →W} and {ρ−1
t : W →W}

are strongly continuous and uniformly bounded;

3 the strong derivatives {(∂N
1
2 )t} and {(∂ρ)t} and the commutators

{[Dt, N
1
2

t ]} and {[Dt, ρt]} on H are uniformly bounded;

4
[
ρt, [Dt, ρt]

]
= 0, [ρt, N

1
2

t ] = 0, [N
1
2

t , πt(a)] = 0, and [ρt, πt(a)] = 0 for all
a ∈ A.
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The total spectral triple

� Theorem: Consider a weakly differentiable family of spectral triples
{(A, πtH,Dt)}t∈R with a family of lapse operators {Nt}t∈R and a
family of volume operators {ρt}t∈R. Define the operators D+ and D−
on L2(R,H)⊕2 by

D± := J
(
±iN−

1
2• ρ•∂tρ

−1
• N−

1
2• − iD̃• ± iN−

1
2• [∂t, ρ•]ρ

−1
• N−

1
2•

)
,

where we have written

D̃• :=
(
D• 0
0 −D•

)
, J :=

(
0 1
1 0

)
.

Then the triples (A� C∞
c (R), L2(R,H)⊕2,D±) are spectral triples.

� Remark: For Nt = ρt = 1, the proof is (more or less) given in
[vdD-Rennie ’16] (which in turn is based on [Kaad-Lesch ’13, §8]).
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The Lorentzian product

� Definition: Consider a weakly differentiable family of spectral triples
{(A, πtH,Dt)}t∈R with a family of lapse operators {Nt}t∈R and a
family of volume operators {ρt}t∈R. We define the operator

D :=
1
2
(D+ +D−) +

i
2
(D+ −D−)

= J
(
− N−

1
2• ρ•∂tρ

−1
• N−

1
2• − iD̃• − N−

1
2• [∂t, ρ•]ρ

−1
• N−

1
2•
)
.

� Then (A� C∞
c (R), L2(R,H⊕H),D) is called a Lorentzian product

spectral triple.
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Comparison

� Other definitions of ‘Lorentzian spectral triples’ are based on Krein
spaces instead of Hilbert spaces, see e.g. [Strohmaier ’06, Paschke-Sitarz
’06, Franco ’14, vdD ’16].

� Theorem: Consider a weakly differentiable family of spectral triples
{(A,H,Dt)}t∈R with a family of lapse operators {Nt}t∈R and a family
of volume operators {ρt}t∈R. Then the operator iD is Krein-self-adjoint.
Furthermore, (A� C∞

c (R), L2(R,H)⊕2, iD,J ) is a Krein spectral triple
(as defined in [vdD ’16]).
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Conclusion

� The Lorentzian Dirac operator /D on a product spacetime can be
‘decomposed’ into the spatial Dirac operators /D•, the lapse function N•,
and the volume function ρ•.

� Given an abstract family of spectral triples over A with ‘lapse operator’
N• and ‘volume operator’ ρ•, we can construct a larger spectral triple
over C0(R, A).

� As a noncommutative analogue of Lorentzian spacetimes, we can define
Lorentzian product spectral triples via the ‘reverse Wick rotation’.
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