Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Pier Paolo Giardino

Brookhaven National Laboratory

ICNFP2017 Kolymbari - 19/08/2017

Based mainly on: G. Degrassi, PPG, F. Maltoni, D. Pagani arXiv:1607.04251

and G. Degrassi, M. Fedele, PPG arXiv:1702.01737

$$V(h) = rac{1}{2}M_h^2h^2 + rac{M_h^2}{2v}h^3 + rac{M_h^2}{8v^2}h^4$$

1	Introduction
2	Direct approach
	• Higgs Pair Production

- κ_{λ} vs. EFT
- Indirect approach
 - Single Higgs Production
 - Precision Physics

A Standard Higgs

JHEP 1608 (2016) 045

- The Higgs still appears to be quite "Standard".
- The couplings with the vector bosons are compatible with the SM within a $\sim 10\%$ uncertainty,
- for the couplings to fermions the compatibility is within $\sim 15-20\%$ uncertainty.

But the situation with the Higgs self couplings is quite different.

The SM Higgs Potential

$$V(\phi) = -\mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2$$
$$V(h) = \frac{1}{2} M_h^2 h^2 + \frac{M_h^2}{2\nu} h^3 + \frac{M_h^2}{8\nu^2} h^4$$

quantumdiaries.com

- The self couplings are fixed once the Higgs mass and the vev are known.
- Trilinear coupling can be investigated at LHC from Higgs Pair Production.
- The quartic coupling will not be measured at LHC (or at ILC/CLIC).

Higgs Pair Production κ_{λ} vs. EFT

$$V(h) = rac{1}{2}M_h^2h^2 + rac{M_h^2}{2v}h^3 + rac{M_h^2}{8v^2}h^4$$

- Higgs Pair Production
- κ_{λ} vs. EFT
- Indirect approach
 - Single Higgs Production
 - Precision Physics

Higgs Pair Production κ_{λ} vs. EFT

Higgs pair production

One vs.	Two at 13 TeV	
$gg \rightarrow H$	\sim 40 pb	

$$gg
ightarrow HH \sim$$
 30 fb

Very small Cross Section.

- Heavier final state.
- Additional weak coupling.
- Destructive interference.

Higgs Pair Production κ_{λ} vs. EFT

Higgs pair production

The situation might change if we assume $V_{H^3} = \lambda_3 v H^3 \equiv \kappa_\lambda \lambda_3^{\rm SM} v H^3.$

One vs.	Two at 13 TeV
gg ightarrow H	\sim 40 pb
gg ightarrow H	H \sim 30 fb

Very small Cross Section.

- Heavier final state.
- Additional weak coupling.
- Destructive interference.

Higgs Pair Production κ_{λ} vs. EFT

Bounds on the anomalous trilinear

arxiv:1603.06896

in the region

PAS-HIG-16-028

Assuming no change in the other Higgs couplings at 8 TeV,

ATLAS and CMS constraints λ_3

$$\mathcal{O}(\pm(15-20)\lambda_3^{
m SM})$$

10

12.9 fb⁻¹ (13 TeV)

bb $\mu\tau_{h}$ + bb $e\tau_{h}$ + bb $\tau_{h}\tau_{h}$

Combined channels

20

30 k.

arXiv:1509.0467; arXiv:1506.0028; arXiv:1603.0689; ATLAS-CONF-2016-049

At 3000 fb⁻¹ λ_3 is constraint in the region $(-1.3, 8.7)\lambda_3^{SM}$

ATL-PHYS-PUB-2014-019; ATL-PHYS-PUB-2015-046

Higgs Pair Production κ_{λ} vs. EFT

$$V(h) = rac{1}{2}M_h^2h^2 + rac{M_h^2}{2v}h^3 + rac{M_h^2}{8v^2}h^4$$

- κ_λ vs. EFT
- Indirect approach
 - Single Higgs Production
 - Precision Physics

Higgs Pair Production κ_{λ} vs. EFT

The dimension 6 operator

$$V^{\dim-6}(\Phi) = V^{\mathrm{SM}}(\Phi) + \frac{c6}{v^2}(\Phi^{\dagger}\Phi)^3$$
, with $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^+ \\ v + H + i\phi^0 \end{pmatrix}$
From the conditions $\left| \frac{dV^{\dim-6}(\Phi)}{d\Phi} \right|_{|\Phi|=v/\sqrt{2}} = 0$,
 $\kappa_{\lambda} = 1 + \frac{2c_6v^2}{m_H^2}$

We need to impose that $\Phi = \frac{v}{\sqrt{2}}$ is still a global minimum. $V^{\dim-6}(v/\sqrt{2}) = \frac{c_6 v^4 - m_H^2 v^2}{8} < 0 = V^{\dim-6}(0) \rightarrow \kappa_\lambda < 3$

C. Grojean, G. Servant and J. D. Wells; Phys. Rev. D71 (2005) 036001

P. Huang, A. Joglekar, B. Li and C. E. M. Wagner; Phys. Rev. D93 (2016) 055049

Higgs Pair Production κ_{λ} vs. EFT

EFT vs. κ_{λ}

 $\kappa_{\lambda} < 3$ is not very interesting for present phenomenology More in general one can write $V^{NP} = \sum_{n=1}^{N} c_{2n} (\Phi^{\dagger} \Phi)^{n}$. We ask the series to be convergent but we do not impose other conditions on c_{2n} . Expanding up to ϕ^{4} ($\xi = \phi^{+} \phi^{-} + \frac{1}{2} \phi^{2}$)

Expanding up to ϕ^4 ($\xi = \phi^+ \phi^- + \frac{1}{2}\phi_2^2$)

$$\begin{split} V_{4\phi}^{NP} &= \frac{m_{H}^{2}}{2v^{2}}\xi^{2} + \left(\frac{m_{H}^{2}}{2v^{2}} + d\lambda_{4}\right)\frac{1}{4}\phi_{1}^{4} + \left(\frac{m_{H}^{2}}{2v^{2}} + 3\,d\lambda_{3}\right)\,\xi\,\phi_{1}^{2} \\ &+ \left(\frac{m_{H}^{2}}{2v} + d\lambda_{3}\right)\phi_{1}^{3} + \frac{m_{H}^{2}}{v}\,\xi\,\phi_{1} + \frac{1}{2}m_{H}^{2}\,\phi_{1}^{2}\,. \end{split}$$

 $V_{4\phi}^{NP}$ gives the same results of the anomalous coupling, since contributions due to $d\lambda_4$ are zero at the order of our calculations.

Single Higgs Production Precision Physics

$$V(h) = rac{1}{2}M_h^2h^2 + rac{M_h^2}{2v}h^3 + rac{M_h^2}{8v^2}h^4$$

- Introduction
 Direct approach

 Higgs Pair Production
 κ_λ vs. EFT

 Indirect approach

 Single Higgs Production
 - Precision Physics

Single Higgs Production Precision Physics

Single Higgs at NLO

The trilinear appears at NLO in Single Higgs processes.

Due to the presence of different Loop structures these contributions cannot be captured by a local rescaling.

M. Gorbahn and U. Haisch, arXiv:1607.03773 [hep-ph]

13/25

Single Higgs Production Precision Physics

Calculation

Processes at NLO

$$\Sigma_{NLO} = Z_H \Sigma_{LO} (1 + \kappa_\lambda C_1)$$

Σ_{LO} contains QCD corrections.

- Z_H is Higgs wave function renormalization,
- C_1 depends on the process.

•
$$Z_H = \frac{1}{1 - \kappa_\lambda^2 \delta Z_H}$$

The range of validity of our calculation is $|\kappa_\lambda| \lesssim 20$

In general an Observable O can be written as

$$O = O^{\mathrm{SM}}[1 + (\kappa_{\lambda} - 1)C_1 + (\kappa_{\lambda}^2 - 1)C_2]$$

Single Higgs Production Precision Physics

Calculation

In general an observable O can be written as

$$O = O^{\mathrm{SM}}[1 + (\kappa_{\lambda} - 1)C_1 + (\kappa_{\lambda}^2 - 1)C_2]$$

 C_1 depend on the specific observable, \sqrt{s} , p_t cuts...

$$C_1 = \frac{\int 2\Re(\mathcal{M}^{0*}\mathcal{M}^1_{\lambda_3^{\rm SM}})}{\int |\mathcal{M}^0|^2}$$

Amplitudes generated by FeynArts, computed by FormCalc interfaced to Loop-Tools,

checked with FeynCalc.

 C_2 is calculated from δZ_H and does not depend on the observable.

Single Higgs Production Precision Physics

C_1 coefficients

C_1^{σ} [%]	ggF	VBF	WH	ZH	tτΗ	$C^{\Gamma}[\%]$	2/2/	77		<i>f f f f f f f f f f</i>	σσ
8 TeV	0.66	0.65	1.05	1.22	3.78	$c_1[/0]$	0.40	22	0.72	0	88
14 TeV	0.66	0.64	1.03	1.18	3.47	on-shell n	0.49	0.05	0.75	0	0.00

Single Higgs Production Precision Physics

Differential Information

Further information can be in principle obtained from the kinematical dependence of the C_1 coefficients.

C_1^{σ} [%]	$25 \mathrm{GeV}$	$50 \mathrm{GeV}$	$100 \mathrm{GeV}$	$200 \ {\rm GeV}$	$500~{\rm GeV}$
WH	1.71	1.56	1.29	1.09	1.03
ZH	2.00	1.83	1.50	1.26	1.19
tτH	5.44	5.14	4.66	3.95	3.54

Table: C_1^{σ} at 13 TeV obtained by imposing the cut $p_T(H) < p_{T,cut}$, for several values of $p_{T,cut}$.

Single Higgs Production Precision Physics

Present

Using the uncertainties presented in arXiv:1312.4974, and assuming that LHC will measure SM, we can estimate the future capabilities of LHC.

Single Higgs Production

Future

A more reliable approach is to consider central values compatible with SM.

We produce a collection of pseudo-measurements randomly generated with a gaussian distribution around the SM.

1) best values, 2) 1 σ region lower limit, 3) 1 σ region upper limit, 4) 2 σ region lower limit, 5) 2 σ region upper limit, 6) $\rho > 0.05$ region

lower limit, 7) $\rho > 0.05$ region upper limit, 8) 1 σ region width, 9) 2 σ region width, 10) $\rho > 0.05$ region width.

Pier Paolo Giardino

$$\kappa_{\lambda}^{p>0.05} = [-2.8, 7.9]$$

For ATLAS 3000 fb⁻¹ $\kappa_{\lambda}^{p>0.05} = [-1.3, 8.7]$

Single Higgs Production Precision Physics

$$V(h) = rac{1}{2}M_h^2h^2 + rac{M_h^2}{2v}h^3 + rac{M_h^2}{8v^2}h^4$$

- 1 Introduction 2 Direct approac
 - Direct approach
 - Higgs Pair Production
 - κ_{λ} vs. EFT
- Indirect approach
 - Single Higgs Production
 - Precision Physics

 λ_3 -dependent contributions in $m_{\scriptscriptstyle W}$ and $\sin^2 heta_{
m eff}^{
m lep}$

Precision physics can also give informations on the trilinear. ¹ The theoretical predictions of m_W and $\sin^2 \theta_{\rm eff}^{\rm lep}$ can be expressed in terms of physical quantities:

$$m_W^2 = rac{\hat{
ho} m_Z^2}{2} \left\{ 1 + \left[1 - rac{4\hat{A}^2}{m_Z^2\hat{
ho}} (1 + \Delta \hat{r}_W)
ight]^{1/2}
ight\}$$

with $\hat{A} = (\pi \hat{\alpha}(m_z)/(\sqrt{2}G_{\mu}))^{1/2}$. $\hat{\rho}$ and $\Delta \hat{r}_W$ are related to the Peskin-Takeuchi parameters T and S.

$$O = O^{\mathrm{SM}}[1 + (\kappa_\lambda - 1)C_1 + (\kappa_\lambda^2 - 1)C_2]$$

¹see also Kribs , Maier, Rzehak, Spannowsky, Waite arXiv:1702.07678

Single Higgs Production Precision Physics

Results

- In our fit we variate only the trilinear coupling. Is this a necessity? (e.g. arXiv: 1704.01953).
- We can have $k_{\lambda} \simeq 20$. Is this allowed by unitarity conditions? (Falkowski and Rattazzi private note: theory with only self-coupling modifications valid up to few TeV for $k_{\lambda} \lesssim 10$)
- Are there concrete models with k_{λ} so large? (arXiv: 1704.02311, arXiv: 1704.01953).

Conclusions

- No direct measurement of the Higgs self couplings. In particular of the trilinear.
- The Higgs trilinear coupling can be investigated from single Higgs processes.
- Compared to Higgs pair production, the bounds obtained are competitive and complementary.
- Precision physics can help further constraints the allowed region.