Exotic Hadrons Workshop, 21-23 August 2017, Crete

Vector bottomonium-like states

Roman Mizuk

Lebedev Physical Institute, Moscow Institute of Physics and Technology

Charmonium table

States below $D\overline{D}$ threshold are narrow (annihilation or \rightarrow other charmonia) States above $D\overline{D}$ threshold are broad ($\rightarrow D\overline{D}$, $D\overline{D}^*$, ...)

Data samples

$$e^+e^- \rightarrow \Upsilon(5S) \rightarrow B\overline{B}, B\overline{B}^*, B^*\overline{B}^*, B\overline{B}^*\pi, B^*\overline{B}^*\pi, B^*\overline{B}^*\pi, B_s^{(*)}\overline{B}_s^{(*)}, \dots$$

Belle 121 fb⁻¹

Energy scan: BaBar 4 fb^{-1} + Belle 26 fb^{-1} Study bottomonium

2007: Belle observed $e^+e^- \rightarrow \Upsilon(1S, 2S, 3S) \pi^+\pi^-$ at $\Upsilon(5S)$

If reactions proceed via $\Upsilon(5S) \Rightarrow$

In bottomonium hadronic transitions are

 Υ (5S) – violation of OZI-rule.

2007: Belle observed $e^+e^- \rightarrow \Upsilon(1S, 2S, 3S) \pi^+\pi^-$ at $\Upsilon(5S)$

If reactions proceed via $\Upsilon(5S) \Rightarrow$

Two possibilities:

- 1. Reactions proceed via $\Upsilon(5S)$ then $\Upsilon(5S)$ has exotic properties
- 2. Reactions proceed via some other state $-Y_b$, Y_b has exotic properties.

 \Rightarrow Measure energy dependence of $\sigma[\Upsilon(nS) \pi^+\pi^-]$

Energy scan by Belle

PRD82,091106R(2010)

2007:

9 points $30pb^{-1}$ for R_b 6 points ~1fb⁻¹ for $\sigma[\Upsilon(nS) \pi\pi]$

No evidence for new Y_b state

Energy scan by Belle

2007:

9 points $30pb^{-1}$ for R_b 6 points $\sim 1fb^{-1}$ for $\sigma[\Upsilon(nS) \pi\pi]$

2010:

61 points 50pb⁻¹ for R_b 16 points ~1fb⁻¹ for $\sigma[\Upsilon(nS) \pi\pi]$

PRD93,011101(2016)

No evidence for new Y_b state

 $e^+e^- \rightarrow \Upsilon(1S,2S,3S) \pi^+\pi^$ proceed via $\Upsilon(5S), \Upsilon(6S)$

√s (GeV)

Transition	Partial width (keV)
$\Upsilon(2S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	5.7 ± 0.5
$\Upsilon(1S)\eta$	$(9.3 \pm 1.5) \times 10^{-3}$
$\Upsilon(3S) \to$	
$\Upsilon(1S) \pi^+ \pi^-$	0.89 ± 0.08
$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$
$\Upsilon(2S) \pi^+ \pi^-$	0.57 ± 0.06
$\Upsilon(4S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0.2
$\Upsilon(1S)\eta$	4.0 ± 0.8
$\Upsilon(2S) \pi^+ \pi^-$	1.8 ± 0.3
$h_b(1P)\eta$	45 ± 7
$\Upsilon(5S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	238 ± 41
$\Upsilon(1S)\eta$	39 ± 11
$\Upsilon(1S) K^+ K^-$	33 ± 11
$\Upsilon(2S) \pi^+ \pi^-$	428 ± 83
$\Upsilon(2S) \eta$	204 ± 44
$\Upsilon(3S) \pi^+ \pi^-$	153 ± 31
$\chi_{b1}(1P)\omega$	84 ± 20
$\chi_{b1}(1P) (\pi^+\pi^-\pi^0)_{\text{non-}\omega}$	28 ± 11
$\chi_{b2}(1P)\omega$	32 ± 15
$\chi_{b2}(1P) (\pi^+\pi^-\pi^0)_{\text{non-}\omega}$	33 ± 20
$\Upsilon_J(1D) \pi^+ \pi^-$	~ 60
$\Upsilon_J(1D)\eta$	150 ± 48
$Z_b(10610)^{\pm}\pi^{\mp}$	2070 ± 440 B
$Z_b(10650)^{\pm}\pi^{\mp}$	1200 ± 300 MP

In bottomonium hadronic transitions are OZI suppressed:

 Υ (5S), Υ (6S) – violation of OZI-rule.

π⁺π⁻ transitions: E1E1 gluons,
 η transitions: E1M2 gluons
 – Heavy Quark Spin Symmetry suppressed

Υ(4S), Υ(5S) – violation of HQSS. Υη / Υπ⁺π⁻, $\chi_{b1}\omega$ / $\chi_{b2}\omega$

Bondar, RM, Voloshin MPLA32,1750025(2017)

Comparison with charmonium-like states

	open charm	$J/\psi \pi^+ \pi^-$	ψ(2S) π ⁺ π ⁻	J/ψ η	$h_c \pi^+ \pi^-$	$\chi_{c0} \omega$	$\chi_{c2} \omega$
ψ(4040)	+			+		_	_
ψ(4160)	+			+		_	
Y(4220)		+			+	+	
Y(4340)		+	+				
Y(4390)					+		
ψ(4415)	+			+			+
Y(4660)	+		+				

Charmonium-like:

Some states are not seen in hadronic channels? Some states are seen in one channel only?

different from bottomonium-like different from bottomonium-like

Decay patterns for charmonium-like and bottomonium-like states are different.

Interpretation

 \bar{B}^*

Hadronic admixture

... is very natural:

 $\begin{bmatrix} pure \\ b\overline{b} \end{bmatrix} + \begin{bmatrix} continuum state \\ B\overline{B} \end{bmatrix} + interaction \implies$

physical state = $c_1 | b\overline{b} \rangle + c_2 | B\overline{B} \rangle$

Hadronic admixture is not an option, but a must.

$$\leftarrow$$
 Enhanced if $B^{(*)}\overline{B}^{(*)}$ are on-shell

Simonov JETP Lett 87,147(2008) Meng Chao PRD77,074003(2008)

Hadronic admixture explains **QZI**. What about **HQSS** ?

Heavy quark spin structure of hadronic admixture

Remu Molecules are **not** eigenstates of the total bb spin

$$\begin{array}{ll} Z_{b} \; = \; BB^{*} & \qquad I^{G} \, (J^{P} \,) = 1^{+} \, (1^{+} \,) \\ Z_{b} \,' = \; B^{*} \overline{B}^{*} & \qquad \end{array}$$

Bondar, Garmash, Milstein, RM, Voloshin, PRD84,054010(2011)

Heavy quark spin structure of hadronic admixture

Reminder Molecules are **not** eigenstates of the total $b\overline{b}$ spin

$$\begin{array}{ll} Z_{b} \; = \; BB* \\ Z_{b}{}' \; = \; B*\overline{B}* \end{array} \qquad I^{G} \, (J^{P} \,) \; = \; 1^{+} \, (1^{+} \,) \end{array}$$

Bondar, Garmash, Milstein, RM, Voloshin, PRD84,054010(2011)

Decomposition $\Rightarrow |Z'_b\rangle = (0^-_{b\bar{b}} \otimes 1^-_{q\bar{q}} - 1^-_{b\bar{b}} \otimes 0^-_{q\bar{q}})/\sqrt{2}$ $|Z_b\rangle = (0^-_{b\bar{b}} \otimes 1^-_{q\bar{q}} + 1^-_{b\bar{b}} \otimes 0^-_{q\bar{q}})/\sqrt{2}$ h_h(mP)π Y(nS)π

Voloshin, PRD85,034024(2012)

Perform decomposition for

BB BB* B*B*

with $I^{G}(J^{P}) = 0^{-}(1^{-}) \implies$

Violation of HQSS in $\Upsilon(4S,5S,6S)$ $\Upsilon(4S): B\overline{B}$ $\frac{1}{2\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12} + \frac{1}{2}\psi_{01}$ spin of $b\overline{b}$ pair
J of light d.o.f.

Violation of HQSS in Υ (4S,5S,6S)

Violation of HQSS in Υ (4S,5S,6S) $\frac{1}{2\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12} + \frac{1}{2}\psi_{01}$ spin of bb pair J of light d.o.f. Ύ(4S): BB Υ (1S) $\pi^+\pi^-$ Υ(1S)η Υ (1S) π⁺π⁻ h_b(1P)η observed in D-wave $\eta_{\rm h}(1S)_{\rm co}$ predicted angular ana. $(\mathbf{B}_{\mathbf{s}}^{*}\bar{\mathbf{B}}_{\mathbf{s}}^{*})_{\mathbf{S}=2} \qquad \frac{\sqrt{5}}{3}\psi_{10} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{11} + \frac{1}{6}\psi_{12}$ $(\mathbf{B}_{\mathbf{s}}^{*}\bar{\mathbf{B}}_{\mathbf{s}}^{*})_{\mathbf{S}=0} \qquad -\frac{1}{6}\psi_{10} - \frac{1}{2\sqrt{3}}\psi_{11} - \frac{\sqrt{5}}{6}\psi_{12} + \frac{\sqrt{3}}{2}\psi_{01}$ × 0.82 ← Υ**(5S)**: × 0.18 Ƴ(1S) K⁺K⁻ h_b(1P)η Ύ(1S)η $\eta_b(1S)\phi$ predicted in D-wave

Next steps

R

BELLE

R

BELLE

R

BELLE

Scan of $e^+e^- \rightarrow B_s^{(*)}B_s^{(*)}$

arxiv:1609.08749

Exclusive $e^+e^- \rightarrow BB$, BB^* , B^*B^* cross sections

Expect many structures – due to nodes of $\Upsilon(5S)$, $\Upsilon(6S)$ wave functions Peaks in different channels are shifted \Rightarrow relatively featureless total cross section Belle plans to measure this

 \Rightarrow Crucial test of hadron admixture interpretation

Deficit of fit to R_b

 $|A_{NR}|^2 + |A_R + A_{5S} e^{i\phi_{5S}} BW(M_{5S}, \Gamma_{5S}) + A_{6S} e^{i\phi_{6S}} BW(M_{6S}, \Gamma_{6S}))|^2$

Deficit of fit to R_b

 $|A_{NR}|^2 + |A_R + A_{5S} e^{i\phi_{5S}} BW(M_{5S}, \Gamma_{5S}) + A_{6S} e^{i\phi_{6S}} BW(M_{6S}, \Gamma_{6S}))|^2$

Conclusion: simple fit model for R_b should not be used.

Peak positions are slightly different \rightarrow -0.02 Expected in coupled channel approach. 10.7 10.78 Breit-Wigner M, Γ are channel-dependent. Universal parameters are pole position and couplings.

Belle-II Prospects

Belle: 1fb⁻¹ per point, Belle-II \rightarrow 10fb⁻¹. Typical Γ = 50 MeV \Rightarrow step 20 MeV. Belle: E_{max} = 11.02 GeV, Belle-II : E_{max} = 11.24 GeV.

Exclusive cross sections : complete information about Υ (4S), Υ (5S), Υ (6S) states Coupled channel analysis: pole positions, couplings to various channels.

Hidden flavor cross sections : search for new states compact tetraquarks and hadrobottomonia : decays to open flavor are suppressed

If a new state is found it is of interest to collect a few fb⁻¹ at its peak

- detailed study of transitions from this state
- search for missing bottomonia in transitions
 spin-singlet members of 3S, 3P, 1D multiplets; complete 2D, 1F, 1G multiplets
- crucial to search for Z_b partners: near-threshold molecular states

Data around 11.2 GeV are useful to study B_s mesons spectroscopy are P wave j=1/2 states below BK threshold? narrow similarly to D_{sJ} ? expected to decay to $B_s\pi^0$ or $B_s\gamma$, difficult for LHCb

Promising energy regions

Bondar, RM, Voloshin MPLA32,1750025(2017)

Molecular states are naturally located near corresponding thresholds:

Particles	Threshold, GeV/c^2	
$B^{(*)}\bar{B}^{**}$	11.00 - 11.07	
$B_s^{(*)}\bar{B}_s^{**}$	11.13 - 11.26	Belle-II maximal energy
$\Lambda_bar\Lambda_b$	11.24	
$B^{**}\bar{B}^{**}$	11.44 - 11.49	
$B_s^{**}\bar{B}_s^{**}$	11.48 - 11.68	
$\Lambda_b ar{\Lambda}_b^{**}$	11.53 - 11.54	
$\Sigma_b^{(*)} \bar{\Sigma}_b^{(*)}$	11.62 - 11.67	
$\Lambda_{h}^{**} \bar{\Lambda}_{h}^{**}$	11.82 - 11.84	

- Belle-II maximal energy of **11.24** GeV covers $B_s^{(*)}B_s^{**}$ threshold region.
- Increase to 11.35 GeV will give information about $\Lambda_b \Lambda_b$ threshold region.
- Increase to 11.5 GeV is crucial to search for partners of Z_b states.

Conclusions

Vector bottomonium-like states:

```
\begin{split} &\Upsilon(4S) \\ &\Upsilon(5S) = c_1 |\overline{bb}\rangle + c_2 |\overline{BB}\rangle + c_3 |\overline{BB}^*\rangle + c_4 |\overline{B}^*\overline{B}^*\rangle + ... \\ &\Upsilon(6S) \end{split}
```

Hadronic admixtures describe existing data.

Belle should measure energy dependence of exclusive open bottom cross sect.

Belle-II: of interest to perform energy scan with 10fb⁻¹ per point and to increase maximal energy from 11.24 to 11.5 GeV.

