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Superradiance
- Zel’Dovich (1971)
- Rotating Black Holes
- Many other systems

Review : Brito et al,
Superradiance. Lect. Notes Phys.,

906:pp.1-237,2015.
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Scalar field 
propagating on 

an effective metric

𝑔𝜇ν =
1 𝑣𝐵

𝑣𝐵
𝑇

𝑣𝐵 × 𝑣𝐵 − 𝑔ℎ𝐵 . 𝐼𝑑

Example in Samaria Gorges

Try to propagate 
against the flow

(blue shift)

Analogue horizon
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Excitation of waves
Condition of superradiance : 𝜔 −𝑚Ω < 0

We want to excite azimuthal waves Instead we excite plane waves

𝑒𝑖𝑘. Ԧ𝑟 = 

𝑚=−∞

∞

𝑖𝑚𝐽𝑚(𝑘𝑟)𝑒
𝑖𝑚𝜃

Data analysis procedure :
- Excite plane waves
- Extract different azimuthal component
- Compare in/out part of the different m’s
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Experimental realisation

Analogue Black Hole : 
- Irrotational
- Stationary
- Axisymmetric

Waves : 
- Shallow water
- Small Amplitude

Numerical simulation by Dolan, S. & Oliveira, E. 
PRD87, 124038 (2013).

Free surface at 3.70 Hz
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Experimental realisation

Plane wave absorbed 
symmetrically

VORTEX

Negative m’s are 
absorbed

Positive m’s are 
amplified ~ 10 - 15%
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Conclusion

The superradiance conditions are fulfilled and we were able to make the first 
detection of this effect in this system !

Rotational superradiant scattering in a vortex flow, Nature Physics 
(June 2017), doi : 10.1038/nphys4151

And we are not in the regime of the analogy !!!

Superradiance 
is a really 

robust effect

Theoretical work : 

Dispersion (T.T. in preparation)

Rotationnal flow (S. Patrick in preparation)

New ideas on 
gravity… ?



Thank you !




