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Example of quantum speedup

• Bob, the problem setter, hides a ball in one of four drawers
• Alice, the problem solver, is to locate it by opening drawers
• In the classical case she may need to open up to three drawers, in the 

quantum case it always takes one 
• There is a quantum speed-up
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Some jargon

• Drawer and ball problem: oracle problem

• Checking whether the ball is in a drawer: 
function evaluation (oracle query)

• b = number of the drawer with the ball; 
checking whether the ball is in drawer a: 
computing (evaluating)  the Kronecker
function

• Quantum speedup:  number of function 
evaluations required by the quantum 
algorithm vs number required by the best 
known classical algorithm 



Speedup is poorly understood

• Dozens of speedups discovered

• All by means of ingenuity

• No fundamental explanation of the speedup

• No unified explanation of the amount of speedup

• A lacuna of quantum computer science 

• Quantum cryptography, the other pillar of 
quantum information, directly relies on the 
foundations of quantum mechanics



Representation incompleteness
• Poor understanding of the speedup: the usual representation of quantum 

algorithms, limited to the process of solving the problem, is physically
incomplete

• Drawer number: 01

• Quantum register A: contains drawer number a. 
• Alice unitarily changes input state it into an output state that encodes the 

solution, then acquired by a final measurement
• Initial measurement: missing
• Number of the drawer with the ball: not represented physically
• Completing the physical representation explains the speedup



Three steps

• 1) extending the usual representation, limited to the 
process of solving the problem, to that of setting it 

• 2) relativizing the extended representation to Alice, 
who cannot see the problem setting selected by Bob 
(should be hidden inside the black box)

• 3) symmetrizing the relativized representation for 
time-reversal – to represent the reversibility of the 
computation process 

Step 3) provides a quantitative explanation of the 
speedup



1) extending the representation

• Adding a quantum register B that contains the number of the 
drawer with the ball

• Unitary transformation between initial and final measurement 
outcomes

• Extended representation works for Bob (and any external 
observer)

• Not for Alice
• Input state                  would tell her the number of the drawer with 

the ball before she begins her problem solving action



Relational quantum mechanics

• Quantum state has meaning to an observer 

• Rejects the notion of absolute, or observer 
independent, state of a system

• E. g. a quantum state could be sharp to an observer 
and a superposition to another



2) relativizing the representation to Alice

• postponing the projection of the quantum state due to the 
initial measurement at the end of the unitary part of Alice’s 
action

• Throughout it, Alice remains completely ignorant of number 
of the drawer with the ball selected by Bob

• Legitimate: degree of freedom of quantum description



3) symmetrizing for time-reversal
• 1) outcome of initial measurement random, 2) unitary

transformation between initial and final measurement
outcomes

• Selection of the number of the drawer with the ball
by:

• 1) initial measurement

• 2) final measurement
• Which measurement?
• Neither one alone: would introduce preferred

direction of time, unjustified in a reversible context
• Share selection evenly between initial and final

measurements



3) symmetrizing for time-reversal

Initial and final measurements reduce to partial 
measurements that evenly and without redundancy 
contribute to the selection, e. g.: 

• initial measurement  of    , reduced to that of     , 
selects 0 of 01; outcome propagated forward in 
time

• final measurement  of     , reduced to that of     , 
selects 1 of 01; outcome propagated backward in 
time

Performing the two propagations in a sequence 
time-symmetrizes the representation                     

• Superposition of all the possible ways of sharing





Advanced knowledge

• Computational complexity of the problem: reduced
to finding a ball hidden in one of two drawers
01,11

• Solving the reduced problem classically requires just 
one function evaluation, a fortiori quantumly



Reduced problem

• Oracle problem can always be solved quantumly
with the number of function evaluations required
to solve its reduced problem classically

• Reduced problem: original one but for the fact that
the problem solver knows in advance a part of the 
problem setting that corresponds to half solution

• Found an upper bound to the quantum 
computational complexity of oracle problem

• It holds for any oracle problem and can be 
computed on the basis of the problem alone



Quantum superposition 
• Taking the superposition of all the time-symmetric 

transformations rebuilds the original transformation with 
respect to Alice

• Symmetrization for time-reversal partitions the 
transformation with respect to Alice into a superposition of 
time-symmetric transformations each solving an instance 
of the reduced problem



Upper bound checked on the major 
quantum algorithms

• Deutsch, Deutsch&Jozsa, Simon, Shor, Grover, 
Abelian hidden subgroup (12 algorithms)

• All optimal in character

• Upper bound always coincides with the number of 
function evaluations required to solve the 
problem in an optimal quantum way

• Conjecture: this holds in general, for any oracle 
problem



Conjecture 

• requires just one function evaluation

• By an optimal quantum algorithm, a non-optimal 
one would require a higher number

• The symbolic description of a quantum process 
speaks to us in classical logic



Summarizing 
• In all cases, half of the random outcome of the initial measurement (half of the problem 

setting) selected back in time by final measurement
• This tells nothing to Bob, who knows the outcome of the initial measurement to start with

• To Alice, who is shielded from the outcome of the initial measurement, it tells half of it and 
thus a corresponding half of the solution

Time-symmetrization by reducing initial and final measurements to complementary partial 
measurements: inspired by the work of Dolev and Elitzur on the non sequential behavior of the 
wave function highlighted by partial measurement



Positioning

Two main approaches to the quantum speedup:

• Quantum computer science (quantum 
complexity classes and their relations to the 
classical ones)

• Relation between speedup and fundamental 
quantum features (entanglement/discord)



Positioning – quantum computer 
science 

• Quantum computer science is analytic in character
• The present explanation of the speedup is synthetic, 

derived from the foundations
• Like in analytic geometry (mathematics on coordinates) 

and the synthetic one (derivation of theorems from 
postulates)

• Analytic counterpart of the upper bound
• Difficulty of deriving it?
• Upper bound vs today’s quantum complexity classes
• If the conjecture that the upper bound is the number of 

function evaluations required by an optimal quantum 
algorithm were true, it would solve the well known 
open problem of quantum query complexity



Positioning – relation between 
speedup and the foundations 

• The speedup appears to always depend on the exact 
nature of the problem while the reason for it varies 
from problem to problem (Vedral, Henderson)

• Present fundamental explanation applies to all 
oracle problems and is quantitative in character



Conclusion  

• Found an upper bound to the computational 
complexity of any oracle problem, always 
coinciding with the number of function evaluations 
required by the optimal quantum algorithm

• Derived in a synthetic way from the foundations of 
quantum mechanics



Future work

(1) Checking whether the upper bound always 
coincides with the number of function 
evaluations required by the optimal quantum 
algorithm

(2) Finding oracle problems liable of interesting 
speedups, classifying quantum complexity of 
oracle problems (compare with existing 
quantum complexity classes)

(3) Further studying the fundamental implications 
of an explanation of the speedup that merges 
time-symmetric quantum mechanics and 
quantum information
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