Observation of ultra-high energy cosmic rays with the Telescope Array experiment

Ryuji Takeishi
Institute for Cosmic Ray Research,
University of Tokyo
Aug. 21, 2017
Contents

1. Introduction of UHECR measurement
2. Telescope Array (TA) experiment
3. Results from TA experiment
4. Summary and future plan
Ultra-high energy cosmic ray (UHECR)

• Cosmic ray: charged particles from outside of the Earth
• Spectrum is power-law shape.
 - Suggests the generation with particle acceleration on astrophysical objects
• Acceleration and propagation information of cosmic rays is obtained from the spectrum.
• Due to low flux,

Origin of UHECRs is unrevealed.
Possible sources of UHECR

- The source candidates are gamma ray burst, active galactic nuclei etc.
- Observation of spectrum and arrival direction anisotropy is necessary.
- Since cosmic rays are deflected by galactic and extragalactic magnetic fields, observation of mass composition is also needed.

At objects above the lines, particles can be accelerated up to 10^{20} eV
Method of UHECR observation

- UHECR is observed by using cascade reaction of primary cosmic rays with atmospheric particles, which is called air shower.
- Using air shower MC, spectrum and arrival direction of primary cosmic rays are reconstructed.

Surface detector (SD)
samples charged particles on the ground.

Fluorescence detector (FD)
measures fluorescence light generated by air shower propagation in the sky.

MC air shower propagation

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Atmospheric depth (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>3000</td>
</tr>
<tr>
<td>4</td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>6000</td>
</tr>
<tr>
<td>7</td>
<td>7000</td>
</tr>
<tr>
<td>8</td>
<td>8000</td>
</tr>
<tr>
<td>9</td>
<td>9000</td>
</tr>
<tr>
<td>10</td>
<td>10000</td>
</tr>
</tbody>
</table>

Altitude (km)

- 1000 km
- 2000 km
- 3000 km
- 4000 km
- 5000 km
- 6000 km
- 7000 km
- 8000 km
- 9000 km
- 10000 km

Number of particles

- e⁺ (× 100)
- e⁻ (× 100)
- μ⁺ (× 5)
- μ⁻ (× 100)

EM are dominated

R. Engel et al., ARNPS (2011)
Uncertainty of UHECR observation

- UHECR energy range is beyond accelerator experiments.
- Hadronic interaction models of MC use extrapolated values for cross section from lower energy data.

Muon excess issue:
- Number of muons N_μ measured by the Auger experiment shows $N_\mu^{\text{data}} \sim 1.8N_\mu^{\text{MC}}$
- Present hadronic models does not fully reproduce UHE air showers.
Telescope Array Collaboration

RU Abbasi 1, M Abe 13, T Abu-Zayyad 1, M Allen 1, R Anderson 1, R Azuma 2, E Barckikowski 1, JW Belz 1, DR Bergman 1, SA Blake 1, R Cad 1, MJ Chae 3, BG Cheon 4, J Chiba 5, M Chikawa 6, WR Cho 7, T Fuji 8, M Fukushima 8,9, T Goto 10, W Hanlon 1, Y Hayashi 10, N Hayashida 11, K Hibino 11, K Honda 12, D Ikeda 8, N Inoue 13, T Ishii 12, R Ishimori 12, H Ito 14, D Ivanov 1, CCH Jui 1, K Kadota 16, F Kakimoto 2, O Kalashev 17, K Kasahara 18, H Kawai 19, S Kawakami 10, S Kawana 13, K Kawata 8, E Kido 3, HB Kim 4, JH Kim 1, JH Kim 25, S Kitamura 2, Y Kitamura 2, V Kuzmin 17, YJ Kwon 7, J Lan 1, SI Lim 3, JP Lundquist 1, K Machida 12, K Martens 9, T Matsuda 20, T Matsuyama 10, JN Matthews 1, M Minamino 10, K Mukaia 12, I Myers 1, K Nagasawa 13, S Nagataki 14, T Nakamura 21, T Nonaka 8, A Nozato 6, S Ogio 10, J Ogura 2, M Ohnishi 8, H Ohoka 8, K Oki 8, T Okuda 22, M Ono 14, A Oshima 10, S Ozawa 18, IH Park 23, MS Pshirkov 24, DC Rodriguez 1, G Rubtsov 17, D Ryu 25, H Sagawa 8, N Sakurai 10, AL Sampson 1, LM Scott 15, PD Shah 1, F Shibata 12, T Shibata 8, H Shimodaira 8, BK Shin 4, JD Smith 1, P Sokolsky 1, RW Springer 1, BT Stokes 1, SR Stratton 1,15, TA Strom 1, T Suzawa 13, M Takamura 5, M Takeda 8, R Takeishi 9, A Taketa 26, M Takei 8, Y Tameda 11, H Tanaka 10, K Tanaka 27, M Tanaka 20, SB Thomas 1, GB Thomson 1, P Tinyakov 17,24, I Tkachev 17, H Tokuno 2, T Tomida 28, S Troitsky 17, Y Tsunesada 2, K Tsutsui 2, Y Uchihi 29, S Udo 11, F Urban 24, G Vasiloff 1, T Wong 1, R Yamane 10, H Yamaoka 20, K Yamazaki 10, J Yang 3, K Yashiro 5, Y Yonekura 10, S Yoshida 19, H Yoshi 30, R Zollinger 1, Z Zundel 1

1 High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA. 2Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan. 3Department of Physics and Institute for the Early Universe, Ewha Womans University, Seoul, Korea. 4Department of Physics, Koninklijke Universiteit Gent, Belgium. 5Department of Physics, Seoul National University, Seoul, Korea. 6Department of Physics, Osaka University, Suita, Osaka, Japan. 7Department of Physics, Tokyo University of Science, Yokohama, Japan. 8Department of Physics, Osaka Prefecture University, Osaka, Japan. 9Department of Physics, University of the Ryukyus, Okinawa, Japan. 10Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo, Japan. 11High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA. 12Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan. 13Department of Physics and Institute for the Early Universe, Ewha Womans University, Seoul, Korea. 14Department of Physics, Koninklijke Universiteit Gent, Belgium. 15Department of Physics, Osaka Prefecture University, Osaka, Japan. 16Department of Physics, Osaka University, Suita, Osaka, Japan. 17Department of Physics, Osaka Prefecture University, Osaka, Japan. 18Department of Physics, Tokyo University of Science, Yokohama, Japan. 19Department of Physics, Osaka Prefecture University, Osaka, Japan. 20Department of Physics, Osaka University, Suita, Osaka, Japan. 21Department of Physics, Osaka Prefecture University, Osaka, Japan. 22Department of Physics, Osaka University, Suita, Osaka, Japan. 23Department of Physics, Osaka Prefecture University, Osaka, Japan. 24Department of Physics, Osaka Prefecture University, Osaka, Japan. 25Department of Physics, Osaka Prefecture University, Osaka, Japan. 26Department of Physics, Osaka Prefecture University, Osaka, Japan. 27Department of Physics, Osaka Prefecture University, Osaka, Japan. 28Department of Physics, Osaka Prefecture University, Osaka, Japan. 29Department of Physics, Osaka Prefecture University, Osaka, Japan. 30Department of Physics, Osaka Prefecture University, Osaka, Japan.
Telescope Array Observatory

- An array of 507 scintillator SDs
- 3 FD stations overlooking the array
- Operational as of 2008

Largest cosmic ray observatory in the Northern hemisphere.

\[\sim 700 \text{ km}^2 \]

\[\Rightarrow \lesssim \frac{1}{10} \text{ of Crete} \]
Event from 2008-10-26

<table>
<thead>
<tr>
<th>MD mono</th>
<th>BR mono</th>
<th>Stereo BR&LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.43</td>
<td>51.50</td>
<td>50.21</td>
</tr>
<tr>
<td>73.76</td>
<td>77.09</td>
<td>71.30</td>
</tr>
<tr>
<td>7.83</td>
<td>7.67</td>
<td>8.55</td>
</tr>
<tr>
<td>-3.10</td>
<td>-4.14</td>
<td>-4.88</td>
</tr>
</tbody>
</table>

Table: Parameters for different event configurations:

- **MD FD**: MD mono event configuration.
- **LR FD**: LR mono event configuration.
- **SD**: Stereo event configuration for BR&LR.
- **BR FD**: BR mono event configuration.

Example Event

Air shower propagation in the sky.
Air shower reconstruction

- Calculate primary cosmic ray energy and geometry from particle signal size and arrival time distributions

[SD hit map for 1 event]

- SD hit signal
- Lateral distribution fit
- Convert S800 to Energy using MC

- SD energy is scaled to FD energy (calorimetric) $E_{SD}/1.27 = E_{FD}$

- $E > 10^{19} \text{ eV}$
- Angular resolution = 1.4°
- Energy resolution < 20%
TA SD Spectrum (9 yrs data)

![Graph showing fit to broken power law]

- Cutoff at highest energy corresponds to GZK cutoff (flux reduction by the reaction between cosmic ray and CMB photons).
Anisotropy results

Total events: 143
Observed: 34
Expected: 13.5

Events over-sampled using 25° circles
Excess center: RA=144.3°, Dec=+40.3°
Li Ma significance: 5.06 σ
2.96 σ chance probability
Mass composition analysis

- Estimate primary cosmic ray mass composition from the depth of the air shower maximum (X_{max})

Lighter composition propagates deeper at same energy

Proton

Iron

Longitudinal distribution for MC
- Proton
- Iron
Composition results

- TA uses different analysis techniques using 3 FDs and hybrid analysis with SD.

MD hybrid

BR/LR hybrid

- Mass composition from TA observation corresponds to light component.
Study of muons from air showers

• Muon excess issue
 → Present hadronic models do not fully reproduce air showers.

• Hadronic interaction models can be tested by comparing the measured number of muons with the MC prediction.

• We analyzed lateral distribution of muons and studied air shower structure using TA SD data.
Study of muons from air showers

- Assume primary particle is proton
- \(80 – 90\%\) of TA SD signal derives from EM components.

Analysis approach:

- Search for the analysis condition where the muon purity in the SD signal becomes high using the MC
- Compare data with MC on the high muon purity condition

Analysis condition
- Energy: \(10^{18.8} \text{ eV} < E < 10^{19.2} \text{ eV}\)
- Experimental data: 7 year dataset (2008/5/11 ~ 2015/5/11), \(~3600\) events
- MC: Firstly check QGSJETII-03 proton, then other hadronic models
 \(~60000\) events
Muon analysis procedure

- EM components generated on the shower axis are attenuated faster than muons in the atmosphere.

- By using the SD in the shower forwarding direction, 60 – 70% of the signal becomes muons.

Analysis range
θ: [0°, 45°]
Φ: [-180°, 180°]
R: [500m, 4500m]

Muon ratio is expected to be larger as θ, |Φ|, R values are larger.

μ ratio in the SD signal

- SD signal (MC)

- Total Muon γ e hadron B.G.

- 60 ~ 70% at 2000~4000m
Muon analysis results (7 yrs data)

- Lateral distribution on condition μ purity 60~70% and data/MC ratio
- Data is larger than MC by more than 1.5 times, with R dependence.

 1.72 ± 0.10 (stat.) ± 0.40 (syst.) $(1910 \text{ m} < R < 2160 \text{ m}) \quad (1.8\sigma)$

 3.14 ± 0.36 (stat.) ± 0.72 (syst.) $(2760 \text{ m} < R < 3120 \text{ m}) \quad (2.7\sigma)$

- Muon excess in the data is suggested. MC models need to be revised.

Lateral distribution

<table>
<thead>
<tr>
<th>Condition</th>
<th>Data/MC Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$30^\circ < \theta < 45^\circ$</td>
<td>1.72 ± 0.10 (stat.) ± 0.40 (syst.)</td>
</tr>
<tr>
<td>$150^\circ <</td>
<td>\theta</td>
</tr>
</tbody>
</table>

Data / MC signal ratio

- Data 7y
- MC QGSJETII-03
Summary of Results

- **Spectrum**
 - Flux suppression at the highest energy

- **Arrival direction**
 - Observation of hotspot in the northern hemisphere

- **Mass composition**
 - Compatible with a light component

- **Hadronic interaction**
 - Muon excess in the data \rightarrow Information about more reliable models is obtained
Get ~20 years of TA SD data by 2020

Clarify the details of hotspot at > 57 EeV

TA SD (~3000 km²): Quadruple area

500 additional scintillator SDs

173 SDs have arrived in Utah for assembly, 77 SD is prepared in Japan.

2 FD stations (12 Telescopes)

telescopes/electronics being prepared at Univ. Utah

Site construction underway at the northern station.
TA Low Energy Extension (TALE)
Observe Galactic to Extra-Galactic Transition

- 10 FD telescopes to look higher in the sky (31-59°) to see shower development
- More dense SDs (lower energy threshold)

TALE-SD array (103 SDs, 70km²)

TALE FD

TALE Energy spectrum (Monocular)

break point: 17.04 +/- 0.052
slope before: 2.86 +/- 0.012
slope after: 3.19 +/- 0.018

TALE-FD + TA-FD(MD)

TA-SD array (507 SDs, 700km²)

TA-FD(LR)

TA-FD(BRM)

400 m spacing
40 SDs

600 m spacing
36 SDs

1.2 km spacing
27 SDs

WLAN Tower
TA SD

- Two layers of flat scintillators
- It records energy deposit when charged particles penetrate the scintillator (~2 MeV for vertical injection)
- It obtains charged particles from air showers

- From time and number density distribution of air shower particles, primary particle energy and arrival direction are reconstructed.

Signal is mainly from muons
TA Fluorescence Detectors

Middle Drum
- 14 telescopes @ station
- 256 PMTs/camera

Reutilized from HiRes-I

Long Ridge

Black Rock Mesa
- 12 telescopes/station
- 256 PMTs/camera

New Telescopes
- 6.8 m²
- ~1 m²
Telescope Array & Pierre Auger Spectra

\[E^3 J(E) / (\text{eV}^2 \text{km}^2 \text{sr}^{-1} \text{yr}^{-1}) \]

- TA SD ICRC 2017
- Auger SD Full Sky (ICRC 2015) +16%

\[\log_{10}(E/eV) \]
Anisotropy Analysis

- SD data full 9 years
- Zenith angle up to 55°, loose border cut
- Geometrical acceptance; exposure 8600 km² yr sr
- Angular resolution: better than 1.5°
- Energy resolution: 20%

\[E > 10 \text{ EeV}, \theta < 55° \]

\[\Delta \Psi \text{ [Degree]} \]

\[\ln \left[\frac{E_{\text{REC}}}{E_{\text{GEN}}} \right] \]

Entries: 323733
Mean: -0.01032
RMS: 0.1888
Prob: 0
Constant: 2.834e+04
Mean: -0.005933
Sigma: 0.1797
Nearby Galaxy Clusters

- Virgo Cluster (D=20Mpc)
- Ursa Major Cluster (D=20Mpc)
- Perseus-Pisces Supercluster (D=70Mpc)
- Eridanus Cluster (D=30Mpc)
- Fornax Cluster
- Centaurus Supercluster (D=60Mpc)

Dots: 2MASS catalog Heliocentric velocity <3000 km/s (D<~45Mpc)

TA hotspot is found near the Ursa Major Cluster. TA & PAO see no excess in the direction of Virgo.
TA composition compared to QGSJet-II.3

The graph compares the TA composition to QGSJet-II.3 in terms of the ratio of (data - iron)/(proton - iron) as a function of log(E(eV)).

Key points:
- Different models are represented by different markers:
 - MD Hybrid: Black circles
 - BR/LR Hybrid: Red circles
 - BR/LR/MD Stereo: Blue circles
- The log(E(eV)) axis ranges from 18 to 20.
- The lnA axis ranges from 0.0 to 4.0, with markers for p, He, N, and Fe.
Results

- Lateral distribution with various hadronic models
- Data is larger than MC for all considered models.

\[
E : 10^{18.8} \sim 19.2 \text{ eV} \\
30^\circ < \theta < 45^\circ \\
150^\circ < |\Phi| < 180^\circ \\
\]

(\text{Data 7y, QGSJETII-03, QGSJETII-04, epos1.99, sibyll2.1})
Results

- Data-MC comparison assuming iron composition

<table>
<thead>
<tr>
<th>R (m)</th>
<th>Data/MC proton</th>
<th>Data/MC iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1910, 2160]</td>
<td>1.72 ± 0.10(stat.) ± 0.40(syst.)</td>
<td>1.26 ± 0.07(stat.) ± 0.29(syst.)</td>
</tr>
<tr>
<td>[2760, 3120]</td>
<td>3.14 ± 0.36(stat.) ± 0.72(syst.)</td>
<td>1.74 ± 0.19(stat.) ± 0.40(syst.)</td>
</tr>
</tbody>
</table>
Correlation plots between muon purity and $N_{\text{data}} / N_{\text{MC}}$ in different (θ, Φ) conditions

- For $30^\circ < \theta < 45^\circ$, $150^\circ < |\Phi| < 180^\circ$, muon purity = $\sim 65\%$ and $\text{Data/MC} = 1.88 \pm 0.08(\text{stat.}) \pm 0.40(\text{syst.})$

- For $\theta < 30^\circ$, $|\Phi| < 30^\circ$, muon purity = $\sim 28\%$ and $\text{Data/MC} = 1.30 \pm 0.06(\text{stat.}) \pm 0.27(\text{syst.})$

Larger number of particles of data than that of MC with larger muon purity. Part of the discrepancy between data and MC is due to muon excess.
Discussion

• Lateral distribution of MC does not reproduce data on muon-enriched condition, and the discrepancy is partially due to muon excess.

• Lateral distribution of data is broader than MC, which possibly indicates air shower development of the data is faster than MC.

• This feature suggests
 - larger hadron interaction cross section
 - larger pion multiplicity
TA Measurement of $\sigma_{p\text{-}air}$ (inelast.)

Inelastic cross section between proton and air calculated from UHECR X_{max} distribution

Hadronic interaction at $E > 10^{18}$ eV is being revealed by air shower experiments.

$\sigma_{p\text{-}air}$ (inelast.) = 567.0±70.5[Stat.] (+25,-29)[Sys.] mb

Λ: attenuation length $\Lambda \propto (\sigma_{p\text{-}air})^{-1}$

$\exp(X_{\text{max}}/\Lambda)$