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Introduction

Null energy condition and its violation

Null Energy Condition (NEC) states that

Tµνk
µkν ≥ 0 =⇒ ρ+ p ≥ 0.1

Covariant conservation of the stress-energy tensor gives

∇µTµν = 0 =⇒ ρ̇ = −3H(ρ+ p).2

Einstein equations give

Gµν = κTµν =⇒ Ḣ = −κ2 (ρ+ p) .3

Therefore, if the NEC holds than it follows that

ρ+ p ≥ 0 =⇒ ρ̇ ≤ 0, Ḣ ≤ 0.

1где Tµν is the matter stress-energy tensor, kµ is a null vector, ρ is the energy density, p is the
pressure.

2H ≡ ȧ
a is the Hubble parameter.

3κ = 8πG where G is the gravitational constant.
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Introduction

Singularity problem

In the framework of General Relativity, cosmological model that satisfies NEC in-
evitably faces with singularity problem: going backwards in time ρ ∼ H2 increases
and eventually reaches singularity.

Planck values?

Planck values

Moreover, at some point it reaches Planck values and Quantum Gravity and Srting
theory come into play.
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Introduction

One can bypass Planck values of energy density during the evolution of the Universe
by introducing new peculiar matter that violates NEC

ρ+ p < 0.

Then the Pandora’s box of non-standard cosmological scenarios is open.

NEC violation

(a) Cosmological bounce

NEC violation

(b) Genesis

During this ‘bounce stage,’ the negative increasing value of H (well below Planck scale)
grow until it reaches a large positive value (well below the Planck scale), at which point
the bounce stage ends and H begins to decrease.
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Introduction

Horndeski theory

In Horndesky theory, one can violate NEC without obvious pathologies.

The Lagrangians posses one peculiar feature that makes it possible to violate NEC:
they include second derivatives but corresponding equation of motion is second-order
differential equation.

For instance, let us consider the case of cubic Galileon. The Lagrangian reads

L3 = F (π,X) +K(π,X)�π,

where X = gµν∂µπ∂νπ, �π = gµν∇µ∇νπ. Variation of Lagrangain gives

δL3 = Fπδπ + FXδX +Kπ�πδπ +KX�πδX +K�δπ =
= ...+KX�πδ∂µπ∂

µπ +K∂µ∂
µδπ

= ...+ 2KX�π∂µπ∂
µδπ + ∂µ∂

µKδπ

= ...− 2KX∂
µ�π∂µπδπ + ∂µ(Kπ∂

µπ + 2KX∂
µ∂νπ∂

νπ)δπ

= ...− 2KX∂
µ∂ν∂

νπ∂µπδπ + 2KX∂µ∂
µ∂νπ∂

νπδπ

= ...only second derivatives.

5 / 29



Introduction

In Horndeski theory various cosmological scenarios were constructed:
Genesis model,
cosmological bounce,
creating a universe in the laboratory.

However, the task of construction the whole evolution (evolution from t = −∞ to
t = +∞) of fully stable Genesis model and cosmological bounce is still unresolved.

No-go

There is no healthy bounce and Genesis in Horndeski theory if one considers the whole
evolution from t = −∞ to t = +∞.
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Introduction

Beyond Horndeski theory

In our work, we consider beyond Horndeski theory with the following action:

S =
∫

d4x
√
−g (L2 + L3 + L4 + L5 + LBH) ,

L2 = F (π,X),
L3 = K(π,X)�π,

L4 = −G4(π,X)R+ 2G4X(π,X)
[
(�π)2 − π;µνπ

;µν] ,
L5 = G5(π,X)Gµνπ;µν + 1

3G5X
[
(�π)3 − 3�ππ;µνπ

;µν + 2π;µνπ
;µρπ ν

;ρ
]
,

LBH = F4(π,X)εµνρσεµ
′ν′ρ′σπ,µπ,µ′π;νν′π;ρρ′

+ F5(π,X)εµνρσεµ
′ν′ρ′σ′

π,µπ,µ′π;νν′π;ρρ′π;σσ′ ,

where π,µ = ∂µπ.
Horndeski theory is obtained if one sets F4(π,X) = F5(π,X) = 0.
One can restore the Einstein-Hilbert gravity by choosing G4(π,X) = 1

2κ , G5(π,X) =
0, where κ = 8πG and G is the gravitational constant.

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Phys. Rev. Lett. 114, no. 21,
211101 (2015) doi:10.1103/PhysRevLett.114.211101 [arXiv:1404.6495 [hep-th]].
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Stability of solutions in beyond Horndeski model

Stability of solutions in beyond Horndeski model

We start from the unperturbed spatially flat FLRW metric (mostly negative signature)

ds2 = dt2 − a2(t)δijdxidxj .

Variation of action with respect to g00 and gii leads to the equations of motion (Einstein
equations) wich we will use later.
We choose unitary gauge

δπ = 0
and adopt the following parametrization:

g00 = 1 + 2α, g0i = −∂iβ, gij = −a2 (e2ζδij + hTij
)
,

where hTij denotes tensor perturbations: hTii = 0, ∂ih
T
ij = 0.

Quadratic action for perturbations then reads:

S =
∫

dtd3xa3

[(
ĜT
8
(
ḣTik
)2 − FT8a2

(
∂ih

T
kl

)2
)

+
(
− 3ĜT ζ̇2 + FT

(Oζ)2

a2

−2GT α
4ζ
a2 + 2ĜT ζ̇

4β
a2 + 6Θαζ̇ − 2Θα4β

a2 + Σα2
)]
,

where ĜT , GT FT , Θ, Σ are some expresions of background Galileon functions.
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Stability of solutions in beyond Horndeski model

Variation of action with respect to the Lagrange multipliers (α and 4β) leads to the
constraint equations.
Substituting these equations into action we obtain quadratic action in the uncon-
strained form

S =
∫

dtd3xa3
[
ĜT
8
(
ḣTik
)2 − FT8a2

(
∂ih

T
kl

)2 + GS ζ̇2 −FS
(Oζ)2

a2

]
,

where the coefficients are

GS = ΣĜ2
T

Θ2 + 3ĜT ,

FS = 1
a

dξ
dt −FT ,

ξ = aGT ĜT
Θ =

a
(
ĜT −Dπ̇

)
ĜT

Θ ,

where D = 2F4Xπ̇ + 6HF5X
2 is purely beyond Horndeski term.

The speeds of sound for tensor and scalar perturbations are, respectively,

c2
T = FT

ĜT
, c2

S = FSGS
.

A healthy and stable solution requires correct signs for kinetic and gradient terms as
well as subluminal propagation:

ĜT > FT > 0, GS > FS > 0.
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Stability of solutions in beyond Horndeski model

No-go and bypassing

FS = 1
a

dξ
dt −FT =⇒ ξ(t2)− ξ(t1) =

t2∫
t1

a(t) (FT + FS) dt.

For bounce, scale factor is bounded by its minimal value at the moment of bounce
a(t) ≥ amin > 0. Now, suppose that ξ(t2) > 0. We have

ξ(t1) = ξ(t2)−

t2∫
t1

a(t) (FT + FS) dt .

This shows that at early enough times t1, one has ξ(t1) < 0. Another possibility is
that ξ(t1) < 0. Then we write

ξ(t2) = −|ξ(t1)|+

t2∫
t1

a(t) (FT + FS) dt,

and at large enough t2 one has ξ(t2) > 0.

Hence, there must be a moment of time when ξ(t) changes sign, i.e, it crosses zero,
ξ(t0) = 0.
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Stability of solutions in beyond Horndeski model

Let us briefly summarize the proof of no-go theorem for Horndeski and show how to
bypass it by introducing beyond Horndeski terms.

L3 : D = 0, ST = 1
8κ
∫

dtd3xa3
[(
ḣTik
)2 − 1

a2

(
∂ih

T
kl

)2
]
,

ĜT = GT = 1
κ

= const,

ξ = 1
κ2

a

Θ , ξ(t0) = 0 =⇒ Θ(t0) =∞,

L3 + L4 + L5 : D = 0, ST =
∫

dtd3xa3
[GT

8
(
ḣTik
)2 − FT8a2

(
∂ih

T
kl

)2
]
,

ĜT = GT 6= const.,

ξ = aGT 2

Θ , ξ(t0) = 0 =⇒ GT = 0,

L3 + L4 + L5 + LBH : D 6= 0, ST =
∫

dtd3xa3
[
ĜT
8
(
ḣTik
)2 − FT8a2

(
∂ih

T
kl

)2
]
,

ĜT ≡ GT +Dπ̇ 6= GT ,

ξ = aĜT GT
Θ , ξ(t0) = 0 =⇒ GT = 0 and ĜT > 0.

Coefficient D plays the crucial role. Let us recall that it reads

D = 2F4Xπ̇ + 6HF5X
2

end emerges only in the framework of beyond Horndeski.
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Stability of solutions in beyond Horndeski model

It is impossible to cook up a Genesis model and cosmological bounce where the Galileon
is massless scalar field both at late and early times.

We want to have Einstein–Hilbert gravity at distant past. Thus, at early times one
has

GT = 1
κ
. (3)

However, GT must change sign at some point and is negative at early times, in con-
tradiction with (3). The latter argument assumes that GT crosses zero only once. To
see that this is the case we recall that

dξ
dt > a (FT + FS) ,

so the function ξ is always growing. Therefore, it can cross zero only once. GT crosses
zero at the same moment as ξ, thus GT crosses zero only once as well.

We construct the bouncing scenario and Genesis with non-trivial Galileon field π in
the asymptotic past, which eventually evolves into a conventional scalar field in distant
future. In this way we keep Θ > 0 at all times.
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Cosmological bounce: an example

Cosmological bounce: an example

At late times, we require the Galileon to become a conventional massless scalar field,
whose equation of state is p = ρ. Then, the late-time asymptotic of the Hubble
parameter is

t→ +∞ : H(t) = 1
3t .

We choose the Hubble parameter at all times equal to

H(t) = t

3(1 + t2) =⇒ a(t) = (1 + t2)
1
6 .

so the bounce occurs at t = 0.

-5 5

-0.1

0.1

0.2

0.3

Figure 1: Hubble parameter H and its time derivative Ḣ.
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Cosmological bounce: an example

The behavior of scalar and tensor kinetic and gradient terms is shown in Figs. 2 and 3.
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Figure 2: Kinetic and gradient terms GS (a) and FS (b) and speed of scalar perturbations cS
(c) with parameters given by (13) and q = 20. Despite appearance, FS and cS are finite as
t→ −∞: FS ≈ 0.193 at t→ −∞; cS ≈ 0.08 at t→ −∞.
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Figure 3: Kinetic and gradient terms for tensor perturbations, ĜT (a) and FT (b), speed of
tensor perturbations cT (c).
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Cosmological bounce: an example

Both ξ and GT change sign simultaneously at π = t = arctanh
(

7
9

)
≈ −1, but ĜT

stays positive at all times, and our mechanism of evading the no-go theorem works.
The behavior of ξ and GT is shown in Fig. 4.

-6 -4 -2 2 4 6

-2

-1

1

2

3

4

Figure 4: Evolution of ξ and GT . ξ = GT = 0 at π = t = arctanh
[

7
9

]
≈ −1.
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Cosmological bounce: an example

Now let us turn to the Lagrangian functions. The Lagrangian at early times has the
form (we no longer use the gauge π̇ = 1):

L|t=−∞ = C0 ·
1
π2 +

(1
3 + C1

) (∂π)2

π2 + C2
(∂π)4

π2

+ 2c1
(∂π)2

π
�π −

(1
2 + 2c2 + 2c3(∂π)2

)
R+ 4c3

[
(�π)2 −∇µνπ∇µνπ

]
+ 2c4ε

µνρσεµ
′ν′ρ′

σ∇µπ∇′µπ∇νν′π∇ρρ′π.

where the coefficients C0, C1 and C2 are combinations of coefficients c1, c2, c3 and c4.

Note that it contains both Horndeski and beyond Horndeski terms.

On the other hand, the Lagrangian at t = +∞ has the form

L|t=+∞ = −1
2R+ 1

3
(∂π)2

π2 = −1
2R+ 1

3(∂φ)2,

where φ = ln(π).

As we anticipated, Galileon field becomes a free massless scalar field interacting with
the Einstein-Hilbert gravity.
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Cosmological bounce: an example

Functions f0, f1, f2 are shown in Fig. 5.
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Figure 5: Lagrangian functions f0(π), f1(π), f2(π) and F (π,X) in the gauge π̇ = 1. Note that
all functions are smooth and without singularities at any point during the entire evolution.
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Genesis: an example

Genesis: an example

Like in the case of the bounce, we require the Galileon to become a conventional
massless scalar field at late times. Thus, the late-time asymptotic of the Hubble
parameter is

t→ +∞ : H(t) = 1
3t .

We choose the Hubble parameter at all times equal to

H(t) = 1
3
√

1 + t2
=⇒ a(t) =

[
t+
√

1 + t2
] 1

3
.

The evolution of the Hubble parameter and its time derivative are shown in Fig. 6.
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Figure 6: Hubble parameter H and its time derivative Ḣ.
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Genesis: an example

The evolution of kinetic and gradient terms as well as the speed of scalar and tensor
perturbations are presented in Fig. 7.
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Figure 7: Kinetic and gradient terms GS (a) and FS (b), speed of scalar perturbations cS (c).
Kinetic and gradient terms ĜT (d) and FT (e), speed of tensor perturbations cT (f).
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Genesis: an example

We show in Fig. 8 the behavior of ξ and GT , which enables one to evade the no-go
argument. The functions ξ(t) and GT cross zero at π = t = arctanh

[
1

17

]
≈ 0.06.

-1.0 -0.5 0.5 1.0

-2

-1

1
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4

Figure 8: Evolution of ξ and GT . Zero crossing ξ = GT = 0 occurs at π = t = arctanh
[

1
17

]
≈

0.06.
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Genesis: an example

The functions f0, f1, f2 are shown in Fig. 9. We see that the Genesis solution is
completely healthy, with all Lagranian functions smooth at all values of π
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Figure 9: Lagrangian functions f0(π), f1(π), f2(π) and F (π,X) in the gauge π̇ = 1. Note that
all functions are smooth and without singularities at any point during the entire evolution.
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Conclusion

Conclusion

We constructed an explicit “classical” cosmological bounce that is free of
any kind of instabilities and singularities during the whole evolution.
We also gave an example of fully stable and geodesically complete Genesis.
We presented the Lagrangian functions and checked that the Einstein and
field equations are satisfied.

The characteristic feature of the solutions, namely, the flow of the Galileon field
into a conventional massless scalar field at late times, enables one to potentially
merge the bouncing and/or Genesis scenario with the conventional evolution at
later stages.
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Appendix
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Appendix

Let us choose the Lagrangian functions as follows:

F (π,X) = f0(π) + f1(π)X + f2(π)X2,

K(π,X) = k1(π)X,

G4(π,X) = 1
2 + g40(π) + g41(π)X,

G5(π,X) = 0,
F4(π,X) = f40(π),
F5(π,X) = 0.

We choose the background field as follows: π = t.

We first specify the explicit forms of k1(t), g40(t), g41(t) and f40(t) at all times. Then
we express the functions f1(t) and f2(t) through k1(t), g40(t), g41(t) and f40(t) via the
Einstein equations, again at all times.
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Appendix

We now turn to functions k1(t), g40(t), g41(t) and f40(t). We should have the following
late-time asymptotics of K, G4 and F4:

t→ +∞ : K(π,X) = 0, G4(π,X) = 1
2 , F4(π,X) = 0.

For Θ one has

Θ = −k1 + ġ40 + 3ġ41 − 8g41H + 2
(1

2 + g40 + g41

)
H + 10f40H.

Considering the latter equation at early times and choosing early-time behavior of G4
and F4:

t→ −∞ : G4(π,X) = const, F4(π,X) = const., (5)

one concludes that k1(t) is naturally chosen proportional to H(t) to have a simple
power-law behavior of Θ.
Let us choose k1(t), g40(t), g41(t) and f40(t) in the following form

k1(t) = c1
t

1 + t2
(1− tanh(t)) ,

g40(t) = c2 (1− tanh(t)) , g41(t) = c3 (1− tanh(t)) ,
f40(t) = c4 (1− tanh(t)) ,

where c1, c2, c3 and c4 are constant coefficients.
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Appendix

Our main purpose now is to find time dependence of f0(t), f1(t) and f2(t). Note that
the only non-vanishing term in the Lagrangian at late times is f1(t). Thus, f0(t) and
f2(t) vanish at late times

t→ +∞ : f0(t) = f2(t) = 0,
We define f1(t) as a sum of two functions

f1(t) = f10(t) + f11(t)
with the following late-time asymptotics:

t→ +∞ : f10(t) = p

t2
, f11(t) = O(t−3),

where p is a constant coefficient. By substituting H(t) = 1/3t and f10(t) = p/t2 into
Einstein equations at t → +∞ with all other Lagrangian functions equal to zero one
finds that p = 1/3. So, we choose f10(t) equal to

f10(t) = 1
3(1 + t2)

at all times. By solving Einstein equations at all times one has

f11(t) =− 2f0 − f10 + k̇1 − 3g̈40 − 3g̈41 + 3H
(
k1 − 3ġ40 − ġ41 − 2ḟ40

)
− 6H2 (1 + 2g40 − 3g41 + 4f40)− 3Ḣ (1 + 2g40 − 2g41 + 2f40) ,

f2(t) =f0 + g̈40 + g̈41 −H
(
3k1 − 5ġ40 − 7ġ41 − 2ḟ40

)
+ 3H2 (1 + 2g40 − 4g41 + 6f40) + Ḣ (1 + 2g40 − 2g41 + 2f40) .
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Appendix

We require that f0(t) satisfies the equation

Σ = q(1− tanh(t))Θ2, (8)

where q is a constant coefficient. From (8) one has

GS = q(1− tanh(t))Ĝ2
T + 3ĜT .

From the latter equation it follows that one can vary GS by changing coefficient q and,
therefore, by changing f0(t). We will make use of latter equation later. Solving Eq. (8)
for f0(t), one has

f0(t) = 1
4

(
k̇1 − 3g̈40 − 3g̈41 + 3H

(
k1 − 5ġ40 − ġ41 − 2ḟ40

)
− 3H2 (3 + 6g40 − 6g41 − 2f40)− 3Ḣ (1 + 2f40 + 2g40 − 2g41)

+ q(1− tanh(t)) (−k1 + ġ40 + 3ġ41 +H (1 + 2g40 − 6g41 + 10f40))2
)
.

One can check that f0(t), f11(t) and f2(t) are smooth functions that rapidly vanish at
late times.

The Lagrangian will be fully defined if we specify the values of coefficients c1, c2, c3,
c4 and q.
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Appendix

At early times, we require
Θ|t=−∞ > 0. (9)

Now, recall that we want GT to turn sign at some point; thus, we require

GT |t=−∞ < 0. (10)

1 Tensor perturbations. In Einstein-Hilbert gravity at late times, one has

ĜT |t=+∞ = FT |t=+∞ = 1 .
We require at early times

ĜT |t=−∞ > FT |t=−∞ > 0. (11)

In addition, we will choose them in such a way that inequality ĜT > FT is satisfied
at all times.

2 Scalar perturbations. Inequality FS |t=+∞ > 0 is equivalent to Ḣ|t=+∞ < 0 and
is satisfied. At early times, we require

FS |t=−∞ > 0. (12)

One possible choice of coefficients c1, c2, c3, c4, such that the inequalities
(9), (10), (11) and (12) are valid, is

c1 = 1, c2 = −1
4 , c3 = 1

32 , c4 = 1
4 . (13)

Moreover, by taking q = 20, the condition GS > FS is satisfied as well.
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