Cosmological bounce and Genesis beyond Horndeski J

Authors: R. Kolevatov, S. Mironov, N. Sukhov, V. Volkova
Presenter: R. K.
Based on arXiv:1705.06626 [hep-th], accepted to JCAP

Institute for Nuclear Research of the Russian Academy of Sciences
and
Department of Particle Physics and Cosmology, Physics Faculty,
M.V. Lomonosov Moscow State University

ICNFP 2017



Introduction

Null energy condition and its violation

Null Energy Condition (NEC) states that
T.k'E" >0 = p+p>0"!
Covariant conservation of the stress-energy tensor gives
V., T" =0 = p=-3H(p+p).?
Einstein equations give
Iz I g k 3
G, =rT) = H:—§(p+p).

Therefore, if the NEC holds than it follows that
p+p>0 = p<0, H<O. J

‘rae T,. is the matter stress-energy tensor, k" is a null vector, p is the energy density, p is the
pressure.

’H = % is the Hubble parameter.
3k = 8wG where G is the gravitational constant.



Introduction

Singularity problem

In the framework of General Relativity, cosmological model that satisfies NEC in-
evitably faces with singularity problem: going backwards in time p ~ H? increases
and eventually reaches singularity.

Planck values

Moreover, at some point it reaches Planck values and Quantum Gravity and Srting
theory come into play.
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Introduction

One can bypass Planck values of energy density during the evolution of the Universe
by introducing new peculiar matter that violates NEC

p+p<O.

Then the Pandora’s box of non-standard cosmological scenarios is open.

NEC viol

— H(t) — H(t)

NEC violation

| T
(a) Cosmological bounce (b) Genesis

During this ‘bounce stage,” the negative increasing value of H (well below Planck scale)
grow until it reaches a large positive value (well below the Planck scale), at which point
the bounce stage ends and H begins to decrease.




Introduction

Horndeski theory

In Horndesky theory, one can violate NEC without obvious pathologies. )

The Lagrangians posses one peculiar feature that makes it possible to violate NEC:
they include second derivatives but corresponding equation of motion is second-order
differential equation.

For instance, let us consider the case of cubic Galileon. The Lagrangian reads
L3 =F(m,X)+ K(m, X)Om,
where X = ¢g""0,m0,m, Or = g""V,V,m. Variation of Lagrangain gives
0L3 = From + FxdX + K,.Ondn + KxOnd X + KOdm =
= ..+ KxOnéo,md"m + KO9,0"om
=..+ 2le:\ﬂ'8#ﬂ'8“57r + 0,0" Ko
= .. —2Kx0"0Ond,mém + 0u(Kr0"1 + 2Kx0" 0, 0" 7)o
=..—2Kx0"0,0"m0,mom + 2K x0,,0" 0, 70" ném

= ...only second derivatives.




Introduction

In Horndeski theory various cosmological scenarios were constructed:

o Genesis model,

@ cosmological bounce,

@ creating a universe in the laboratory.
However, the task of construction the whole evolution (evolution from ¢ = —oo to
t = +00) of fully stable Genesis model and cosmological bounce is still unresolved.

No-go

There is no healthy bounce and Genesis in Horndeski theory if one considers the whole
evolution from ¢t = —oo to t = +o0.
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Introduction

Beyond Horndeski theory

In our work, we consider beyond Horndeski theory with the following action:

S = /d4x\/—g(£2+£3+£4+£5+£BH)7

Lo =F(m,X),
ESIK(W,X)DW,
L4 =—Gu(m, X)R + 2G4x (7, X) [(DW)Q — W;Hyﬁmu] ,

1 . .
L5 =Gs(m, X)G" 70 + §G5X [(\:hr)?’ — 30rm, ., + 27T;W7r‘“’27r;py] ,

ror !
— wvp w'v'p'o
Ly = Fu(m, X)e""’ e T T T !
o 1t

+ Fy(m, X)e" 7" VP T i T T Tt

where 7, = O, 7.

Horndeski theory is obtained if one sets Fy(m, X) = F5(m, X) = 0.
One can restore the Einstein-Hilbert gravity by choosing Ga(mw, X) =
0, where Kk = 871G and G is the gravitational constant.

Gs(m, X) =

2K

@ J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Phys. Rev. Lett. 114, no. 21,
211101 (2015) doi:10.1103/PhysRevLett.114.211101 [arXiv:1404.6495 [hep-th]].
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Stability of solutions in beyond Horndeski model

Stability of solutions in beyond Horndeski model

We start from the unperturbed spatially flat FLRW metric (mostly negative signature)

ds® = dt* — a®(t)8;;dz’ da” .

Variation of action with respect to g°° and ¢* leads to the equations of motion (Einstein

equations) wich we will use later.
We choose unitary gauge
émr=0
and adopt the following parametrization:
goo =1+ 2c, goi=—0:8, gij = —a’ (52C5ij + hﬂ) ,

where h;fg- denotes tensor perturbations: hZ =0, 8ihiTj =0.
Quadratic action for perturbations then reads:

g 2
§= /dtdgw3 [ (987— (hgc)Q - ;TTQ (31'}1{1)2) + (— 3G7¢? +]-'T(v<)

a2

a? a?

—2G1ra 4¢ + QQATC.% + 6@(1(. — 20« A + ZaQ)] ,

where QT, Gr Fr, ©, ¥ are some expresions of background Galileon functions.



Stability of solutions in beyond Horndeski model

Variation of action with respect to the Lagrange multipliers (o and AS) leads to the
constraint equations.

Substituting these equations into action we obtain quadratic action in the uncon-
strained form

2
S = /dtd3xa [QST (h%)* - é%. (9:h)” + Gs¢? — s t%)

a? |’

where the coefficients are

52
Gs Eeng + 367,
_1dg
]:3 a dt ]:Ta
- aGrGr @ (gT D”) g
G © ’

where D = 2F,; X7 + 6 HF5X? is purely beyond Horndeski term.

The speeds of sound for tensor and scalar perturbations are, respectively,

Fr 2 Fs

QT ’ T Gs'

A healthy and stable solution requires correct signs for kinetic and gradient terms as
well as subluminal propagation:

2
Cr =

gAT>.7:7'>07 Gs > Fs >0.



Stability of solutions in beyond Horndeski model

No-go and bypassing

Fe=l¥orm = e -co0= [aFr e Fa

For bounce, scale factor is bounded by its minimal value at the moment of bounce
a(t) > amin > 0. Now, suppose that £(¢2) > 0. We have

E(t1) = &(t2) — /a(t) (Fr+ Fs)dt.

t1

This shows that at early enough times ¢1, one has £(t1) < 0. Another possibility is
that £(t1) < 0. Then we write

£(2) = —Je(t)] + / ot) (Fr + Fs)dt,

and at large enough t2 one has £(t2) > 0.

Hence, there must be a moment of time when £(¢) changes sign, i.e, it crosses zero,J

g(to) =0.
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Stability of solutions in beyond Horndeski model

Let us briefly summarize the proof of no-go theorem for Horndeski and show how to
bypass it by introducing beyond Horndeski terms.

L3

L3+ Ls+Ls5:

L3+ Ly+Ls+ L :

D=0, sr= 1 fawrea [(1%) - L (anh)’].

Gr =Gy = = = const,
1a "
é-: ?67 €(t0) :O:>9(to):oo,

g N2 F 2
D=0, S = [didra’ 5 ()" - 5% (2nk)’).
G1r = Gr # const.,

2
6= ) =0=>Gr =0,

; o2 F 2
D#0, Sr=[dtd’zd® {ST (hh)” — 877; (9ihiy) }
QTEQT+Dﬁ¢QT7

g:“gggT, E(to)) =0=Gr =0 and G >0.

Coefficient D plays the crucial role. Let us recall that it reads

D=2FX7+ 6HF;X?>

end emerges only in the framework of beyond Horndeski.



Stability of solutions in beyond Horndeski model

It is impossible to cook up a Genesis model and cosmological bounce where the Galileon
is massless scalar field both at late and early times. J

We want to have Einstein—Hilbert gravity at distant past. Thus, at early times one
has

Gr=—. (3)

K
However, G must change sign at some point and is negative at early times, in con-
tradiction with (3). The latter argument assumes that Gy crosses zero only once. To
see that this is the case we recall that

d

75 >a(Fr+ Fs),
dt
so the function £ is always growing. Therefore, it can cross zero only once. G7 crosses
zero at the same moment as &, thus G crosses zero only once as well.

We construct the bouncing scenario and Genesis with non-trivial Galileon field 7 in
the asymptotic past, which eventually evolves into a conventional scalar field in distant
future. In this way we keep © > 0 at all times.




Cosmological bounce: an example

Cosmological bounce: an example

At late times, we require the Galileon to become a conventional massless scalar field,
whose equation of state is p = p. Then, the late-time asymptotic of the Hubble

parameter is

1
t — 4o0: H(t):§.
We choose the Hubble parameter at all times equal to
t 2,1
Ht) = —— = t) = (1+¢%)s.
0= 3758 alt) = (1+%)
so the bounce occurs at t = 0.
0.3h
0pf
/\ — H
0.1 ‘
H
‘ : t
-5 5
-0dr

Figure 1: Hubble parameter H and its time derivative H.



Cosmological bounce: an example

The behavior of scalar and tensor kinetic and gradient terms is shown in Figs. 2 and 3.

10

() W

Figure 2: Kinetic and gradient terms Gs (a) and Fs (b) and speed of scalar perturbations cg
(c¢) with parameters given by (13) and ¢ = 20. Despite appearance, Fs and cs are finite as
t — —oo: Fs ~0.193 at t - —o0; cs ~ 0.08 at t — —oo0.

(a)

Figure 3: Kinetic and gradient terms for tensor perturbations, G (a) and Fr (b), speed of
tensor perturbations ¢ (c).




Cosmological bounce: an example

Both ¢ and G5 change sign simultaneously at m = t = arctanh (g) ~ —1, but Gr
stays positive at all times, and our mechanism of evading the no-go theorem works.

The behavior of £ and G7 is shown in Fig. 4.

J

Figure 4: Evolution of £ and Gy. £ = G5 =0 at m =t = arctanh [%] ~ —1.



Cosmological bounce: an example

Now let us turn to the Lagrangian functions. The Lagrangian at early times has the
form (we no longer use the gauge © = 1):

4
Llt=—0c =Co - — + (1 + Cl) (8ﬂ-) + C2 (87r)
w2 2

3
(377)2

1
+ 2¢1 Onr — (5 + 2¢2 + 2c3 (5‘7r)2) R+ 4cs [(Dw)2 — V‘“’WVWW]
+ 2046””’)‘76”/"/p/UVHWV:LWVW/WVPP/W.

where the coefficients Cp, C1 and C2 are combinations of coefficients c¢1, c2, ¢3 and ¢4.

Note that it contains both Horndeski and beyond Horndeski terms. J

On the other hand, the Lagrangian at ¢ = 400 has the form

E|t:+oo = — = _7R+ (8¢)
where ¢ = In(7).

As we anticipated, Galileon field becomes a free massless scalar field interacting with
the Einstein-Hilbert gravity. J
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Cosmological bounce: an example

Functions fo, fi1, f2 are shown in Fig. 5.

— folt) — h)

— fat) — F(m,X)

Figure 5: Lagrangian functions fo (), fi(w), f2(7) and F(7, X) in the gauge 7« = 1. Note that
all functions are smooth and without singularities at any point during the entire evolution.



Genesis: an example

Genesis: an example

Like in the case of the bounce, we require the Galileon to become a conventional
massless scalar field at late times. Thus, the late-time asymptotic of the Hubble
parameter is

1
t : H(t) = —.
— +o0 (t) e
We choose the Hubble parameter at all times equal to
H(t) 1 —  at) {t i tQ} :
= — a =
3V1+t?

The evolution of the Hubble parameter and its time derivative are shown in Fig. 6.

-0.1p

Figure 6: Hubble parameter H and its time derivative H.



Genesis: an example

The evolution of kinetic and gradient terms as well as the speed of scalar and tensor
perturbations are presented in Fig. 7.

(e)

Figure 7: Kinetic and gradient terms Gs (a) and Fs (b), speed of scalar perturbations cs (c).
Kinetic and gradient terms G (d) and Fr (e), speed of tensor perturbations ¢ (f).



Genesis: an example

We show in Fig. 8 the behavior of £ and Gy, which enables one to evade the no-go

argument. The functions £(t) and Gr cross zero at m = ¢ = arctanh [%] ~ 0.06.

4

3

2

1

-1.0 -0.5
-1

-2

Figure 8: Evolution of € and G7. Zero crossing £ = G = 0 occurs at m =t = arctanh [%7]

0.06.

~
~



Genesis: an example

The functions fo, fi, f2 are shown in Fig. 9. We see that the Genesis solution is
completely healthy, with all Lagranian functions smooth at all values of 7

— Jo(t) — hit)

— falt) — F(m,X)

(c) (d)

Figure 9: Lagrangian functions fo (), fi(w), f2(7) and F(7, X) in the gauge 7« = 1. Note that
all functions are smooth and without singularities at any point during the entire evolution.



Conclusion

Conclusion

e We constructed an explicit “classical” cosmological bounce that is free of
any kind of instabilities and singularities during the whole evolution.

e We also gave an example of fully stable and geodesically complete Genesis.

o We presented the Lagrangian functions and checked that the Einstein and
field equations are satisfied.

The characteristic feature of the solutions, namely, the flow of the Galileon field
into a conventional massless scalar field at late times, enables one to potentially
merge the bouncing and/or Genesis scenario with the conventional evolution at
later stages.
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Appendix

Let us choose the Lagrangian functions as follows:

Gia(m, X) = 5 + gao(m) + gun (m) X,
Gs(m,X) =0,

Fy(m, X) = fao(m),

F5(7T,X) =0.

We choose the background field as follows: 7w = ¢.

We first specify the explicit forms of k1(t), gao(t), ga1(t) and fio(t) at all times. Then
we express the functions fi(t) and f2(t) through ki1 (¢), gao(t), g41(t) and fao(t) via the
Einstein equations, again at all times.




Appendix

We now turn to functions k1(t), gao(t), ga1(t) and fao(t). We should have the following
late-time asymptotics of K, G4 and Fjy:

1
t—4o00: K(m,X)=0, G4(7T,X):§, Fy(m,X)=0.
For © one has
1
© = —ki+ gao +3ga1 —8gu1 H +2 (5 ~+ ga0 +g41) H + 10f40H.

Considering the latter equation at early times and choosing early-time behavior of G4
and Fy:
t— —oo: Gu(m,X)=const, Fy(m,X)=const., (5)

one concludes that ki(¢) is naturally chosen proportional to H(t) to have a simple
power-law behavior of ©.
Let us choose k1(t), gao(t), ga1(t) and fa0(t) in the following form

t
kl (t) = Cl]-_"_i252

gao(t) = c2 (1 — tanh(t)), ga1(t) = c3 (1 — tanh(t)),
fa0 (t) =cq (1 — tanh(t)) R

(1 — tanh(t)),

where c1, c2, cs and c4 are constant coefficients.



Appendix

Our main purpose now is to find time dependence of fo(t), f1(t) and f2(t). Note that
the only non-vanishing term in the Lagrangian at late times is f1(¢). Thus, fo(¢t) and
f2(t) vanish at late times

o tooi folt) = falt) =0,
We define fi(t) as a sum of two functions
f1(t) = fio(t) + fra(t)

with the following late-time asymptotics:

ttoo: fiolt) = 3. () =06,

where p is a constant coefficient. By substituting H(t) = 1/3t and fio(t) = p/t? into
Einstein equations at t — +oo with all other Lagrangian functions equal to zero one
finds that p = 1/3. So, we choose fi0(t) equal to

1
Jio(t) = 30+ 2)

at all times. By solving Einstein equations at all times one has
Fra(t) == 2fo — fro + k1 — 3fjao — 3gar + 3H (k1 — 3ga0 — ga1 — 2fa0)
—6H” (14 2940 — 3941 + 4fa0) — 3H (14 2910 — 2941 + 2f10)
f2(t) =fo+ Gao+ ga1 — H (3k1 — 5G40 — Tga1 — 2f40)
+ 3H?> (1 4+ 2940 — 4ga1 + 6fa0) + H (1 + 2940 — 2941 + 2f40) -



Appendix
We require that fo(t) satisfies the equation
¥ = (1 — tanh(t))©?, (8)
where ¢ is a constant coefficient. From (8) one has
Gs =q(1— tanh(t))@%— + 3@7—.

From the latter equation it follows that one can vary Gs by changing coefficient g and,
therefore, by changing fo(t). We will make use of latter equation later. Solving Eq. (8)
for fo(t), one has

fo(t) = i(/ﬂ — 3ga0 — 3da1 + 3H (k1 — 5ga0 — gar — 2fa0)
— 3H” (3 + 6940 — 6941 — 2f10) — 3H (1 + 2f10 + 2940 — 2941)
+ q(1 — tanh(t)) (—k1 + gao + 3941 + H (1 + 2940 — 6941 + 10f10))” )
One can check that fo(t), f11(t) and f2(t) are smooth functions that rapidly vanish at

late times.

The Lagrangian will be fully defined if we specify the values of coefficients ci, c2, c3,
¢4 and q. J
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At early times, we require

Olt=—o0o > 0. 9)
Now, recall that we want G5 to turn sign at some point; thus, we require
G7i=—0 < 0. (10)

@ Tensor perturbations. In Einstein-Hilbert gravity at late times, one has
GTli=too = Frlimioo = 1.
We require at early times
G'Tlt:—oo > Frli=—eo > 0. (11)

In addition, we will choose them in such a way that inequality Gr > Fr is satisfied
at all times.
@ Scalar perturbations. Inequality Fs|t=+o > 0 is equivalent to H|;=4oc < 0 and
is satisfied. At early times, we require
Fsli=—co > 0. (12)
One possible choice of coefficients c1, c2, c3, ca, such that the inequalities
(9), (10), (11) and (12) are valid, is
1 1 1
= = — =-. 1
1 ® T3y T (13)
Moreover, by taking ¢ = 20, the condition Gs > Fs is satisfied as well.

C1:17 Cy =
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