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Vadim Kuzmin suggested in 1970 to search for a neutron-
antineutron oscillation, the process which breaks 
conservation of the baryon charge    by two units,            .   
The experiment is under intensive discussion now.

We analyze discrete symmetries C, P and T in the the 
amplitude of neutron-antineutron mixing.  While all these 
symmetries are preserved at the level of free particles, 
there are certain subtleties in their definition for baryon 
charge breaking amplitudes.

We also show that the presence of external magnetic field  
does not add any new operator to       mixing  provided 
that rotational invariance is not broken.
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Although an existence of the oscillation does not automatically imply CP violation it influences the
form of CP-odd interaction. We also show that presence of external magnetic field does not add
any new operator to mixing of neutron and antineutron provided that rotational invariance is not
broken.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states

with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.
How the baryon number nonconservation shows up at

the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).
What is the status of discrete C, P and T symmetries

under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
in the form
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Dirac Lagrangian for neutron
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describes free neutron and antineutron and preserves the 
baryon charge,          for    ,            for    .
Continuous U(1) symmetry:

Another term                consistent with     conservation
can be rotated away by chiral rotation

Four degenerate states: two spin doublets differ by    . 
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We analyze discrete symmetries in the amplitude of neutron-antineutron transition breaking con-
servation of baryon charge. While all discrete symmetries, C, P and T, are preserved at the level
of free particles, non-conservation of baryon charge leads to certain specifics in their definitions.
Although an existence of the oscillation does not automatically imply CP violation it influences the
form of CP-odd interaction. We also show that presence of external magnetic field does not add
any new operator to mixing of neutron and antineutron provided that rotational invariance is not
broken.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
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bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten



How does baryon number nonconservation show up?

At the bilinear n fields level the most generic Lorentz 
invariant modification reduces to only one term which 
breaks the baryon charge by two units,
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten

FTPI-MINN-15/29, NSF-KITP-15-073

Neutron–Antineutron Oscillation and Signals of CP Violation

Zurab Berezhiani1, 2 and Arkady Vainshtein3, 4

1
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten

What is status of  discrete         and    symmetries?

The Dirac Lagrangian preserves, of course, all of them.
Indeed, we can rewrite it as 

This form demonstrates the     invariance,            .
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten

2

in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�

µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏

⇥
n

c
n + n̄ n

c
⇤
,

(5)

which makes the C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (6)

which are even and odd under the charge conjugation,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏

⇥
n̄1 n1 � n̄2 n2

⇤
.

(7)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �

0
n , n

c ! ��0
n

c
, (8)

where �0
C�

0 = �C is used. The opposite signs in
transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0
n , n

c ! �e�i↵
�

0
n

c
.

(9)
Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.
Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�

0
n , n

c ! i�

0
n

c (10)

with P2
z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1.
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 

i↵
, i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 

↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  

↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵
 

k
↵ + m

ki
 k ↵̇  

↵̇
i

i
,

(13)

1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,
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0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
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Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
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lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
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In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
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which makes the C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n
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p
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, (6)

which are even and odd under the charge conjugation,
Cn1,2 = ±n1,2. Namely,
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �

0
n , n

c ! ��0
n

c
, (8)

where �0
C�

0 = �C is used. The opposite signs in
transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0
n , n

c ! �e�i↵
�

0
n

c
.

(9)
Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.
Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�

0
n , n

c ! i�

0
n

c (10)

with P2
z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1.
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1
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, i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,
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One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
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fermion fields is
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1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
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turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
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What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,
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It is simple to verify that both Lagrangians above, (1)
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n
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n + n̄ n
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(5)

which makes the C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (6)

which are even and odd under the charge conjugation,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏

⇥
n̄1 n1 � n̄2 n2

⇤
.

(7)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �

0
n , n

c ! ��0
n

c
, (8)

where �0
C�

0 = �C is used. The opposite signs in
transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0
n , n

c ! �e�i↵
�

0
n

c
.

(9)
Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.
Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�

0
n , n

c ! i�

0
n

c (10)

with P2
z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1.
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 

i↵
, i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 

↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  
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1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �

0
n , n

c ! ��0
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, (8)

where �0
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0 = �C is used. The opposite signs in
transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0
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Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
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Thus, it is possible to choose ↵ = ⇡/2 to define Pz,
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z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
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tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
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mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1.
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1
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transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0
n , n

c ! �e�i↵
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0
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.
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Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.
Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�
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n , n

c ! i�

0
n

c (10)

with P2
z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1.
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1
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1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,
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Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n
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T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �

0
n , n

c ! ��0
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, (8)

where �0
C�

0 = �C is used. The opposite signs in
transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,
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Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.
Thus, it is possible to choose ↵ = ⇡/2 to define Pz,
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with P2
z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
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ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
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Although an existence of the oscillation does not automatically imply CP violation it influences the
form of CP-odd interaction. We also show that presence of external magnetic field does not add
any new operator to mixing of neutron and antineutron provided that rotational invariance is not
broken.

*
e

+

nn̄

LfM(x)

LM(x) =
X

ci(M)Oi
M

⌧
exp

⇥
i

Z
d

4
xLM(x)

⇤�
=

⌧
exp

⇥
i

Z
d

4
xLfM(x)

⇤�

E <<

f
M < M

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten

2

in the form

LD =
i

2

⇥
n̄�

µ
@µn + n

c
�

µ
@µn

c
⇤
�

m

2

⇥
n̄n + n

c
n

c
⇤
,

�LB6 = �
1

2
✏

⇥
n

c
n + n̄ n

c
⇤
,

(5)

which makes the C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± n

c

p
2

, (6)

which are even and odd under the charge conjugation,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ
@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏

⇥
n̄1 n1 � n̄2 n2

⇤
.

(7)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �

0
n , n

c ! ��0
n

c
, (8)

where �0
C�

0 = �C is used. The opposite signs in
transformations for n and n

c reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0
n , n

c ! �e�i↵
�

0
n

c
.

(9)
Of course, then P2

↵ = e2iB↵ 6= 1 but the phase is unob-
servable when B is conserved.

When baryon charge is not conserved, i.e., �LB6 is
switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡

in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.
Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�

0
n , n

c ! i�

0
n

c (10)

with P2
z = �1. Now Pz parities of n and n

c are the
same and equal to i, so the mixing of n and n

c does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n

c equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1.
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.

Note that in connection with Majorana neutrino the
subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 

i↵
, i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 

↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  

↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵
 

k
↵ + m

ki
 k ↵̇  

↵̇
i

i
,

(13)

1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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there is no      breaking one can include the U(1) phase 
rotation and define    as     
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How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)⇤. The most generic

Dipartimento di Fisica, Università dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila,
Italy INFN, Laboratori Nazionali Gran Sasso, 67010 Assergi, L’Aquila, Italy

Department of Physics, University of Minnesota, Minneapolis, MN 55455, USA William
I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455,
USA Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA
93106, USA

NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP

VIOLATION

ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
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Of course, then                  but the phase is unobservable 
when     is conserved. 
When the        is switched on the only remnant of the 
baryonic U(1) is a discrete     , i.e.,                       .                   
   Thus, we can choose             to define  
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How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)⇤. The most generic
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1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.
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with            . Now     parities of     and     are the same   
and  they can mix without breaking      . Thus,          
preserves all discrete symmetries,    ,      and    .
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with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0n .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
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Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
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away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0nc .
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This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
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field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (8)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(9)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved, i.e., �LB6 is

switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡
in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.

Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (10)

with P2
z = �1. Now Pz parities of n and nc are the

same and equal to i, so the mixing of n and nc does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .

Couple of related comments. First, preservation of
T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n̄ equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n̄)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n̄) = �1.

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 i↵ , i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  
↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵ k
↵ + mki  k ↵̇  

↵̇
i

i
,

(13)
where @↵↵̇ = �̄µ

↵↵̇@µ , �̄µ = {1,�~�}, mik is the sym-
metric mass matrix, mik = mki and mik = (mik)

⇤ is
its conjugate.
The kinetic term in (13) is U(2) symmetric: besides

flavor SU(2) rotations it includes also U(1) associated
with the overall phase rotation of the doublet (11). The
U(2) symmetry of kinetic terms it clearly generic: start-

ing with i 
↵̇
i Ci

k @↵↵̇  k↵ where Ci
k is a Hermitian fla-

vor matrix, one can always diagonalize and normalize
these terms.
As for the mass terms they generically break both,

U(1) and SU(2) flavor symmetries, so no continuous sym-
metry remains. To see how the U(1) symmetry (2) as-
sociated with the baryon charge could survive note that
one can interpret U(2) transformations as acting on the
external mass matrix mik. This matrix is charged under
U(1), the overall phase rotation, so this U(1) symmetry
is always broken by nonvanishing mass. In respect to
SU(2) transformations the symmetric tensor mik is the
adjoint representation, i.e., can be viewed as an isovector
µa, a = 1, 2, 3,

mi
k = "ijmjk = µa(⌧a)ik , a = 1, 2, 3 , (14)

1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0n .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet
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We analyze discrete symmetries in the amplitude of neutron-antineutron transition breaking con-
servation of baryon charge. While all discrete symmetries, C, P and T, are preserved at the level
of free particles, non-conservation of baryon charge leads to certain specifics in their definitions.
Although an existence of the oscillation does not automatically imply CP violation it influences the
form of CP-odd interaction. We also show that presence of external magnetic field does not add
any new operator to mixing of neutron and antineutron provided that rotational invariance is not
broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�µ@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im0n̄�5n , consistent
with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
. (3)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a

real positive parameter. The reality and positivity of ✏
as a coe�cient for nTCn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form nTC�5n can be rotated away by the chiral
rotation n ! ei��5n.
Also mixed kinetic terms/ in̄�µC@µn̄T+h.c. can be

turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).
What is the status of discrete C, P and T symmetries

under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! nc = Cn̄T . (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(5)

which makes the C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1,2 =
n ± nc

p
2

, (6)

which are even and odd under the charge conjugation,
n1,2 ! ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(7)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0n .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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substitution
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This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)⇤. The most generic



Couple of comments.
First, CPT theorem for local Lorentz-invariant Lagrangians  
implies that the definition of     would follow the definition 
of       .

Second, it is amusing  that the same     for     and      is   
still consistent with is consistent with the opposite parity                 
for for fermion and antifermion.         should be compared 
with            .  Also for the fermion-antifermion pair 

     Thus,                neutron-antineutron mixing leads to 
specific definition of parity with            . This should used 
for analyzing        in interactions.             
Similar effects for neutrino were noted by Wolfenstein ’81.
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
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M± = m ± ✏
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P :

P 2
↵ = e2iB↵ 6= 1

P 2
z = �1

↵ = ⇡/2

CPz

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states

2
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How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,
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matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
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appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).
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In fact, the expression (4) can be rewritten in the form �(1/2) ✏
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makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
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consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.
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a form containing only the terms (1), (3) and (4).
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to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
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makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the
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(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.

2

2

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (8)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(9)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved, i.e., �LB6 is

switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡
in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.

Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (10)

with P2
z = �1. Now Pz parities of n and nc are the

same and equal to i, so the mixing of n and nc does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .

Couple of related comments. First, preservation of
T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and n̄ equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n̄)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n̄) = �1.

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 i↵ , i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  
↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵ k
↵ + mki  k ↵̇  

↵̇
i

i
,

(13)
where @↵↵̇ = �̄µ

↵↵̇@µ , �̄µ = {1,�~�}, mik is the sym-
metric mass matrix, mik = mki and mik = (mik)

⇤ is
its conjugate.
The kinetic term in (13) is U(2) symmetric: besides

flavor SU(2) rotations it includes also U(1) associated
with the overall phase rotation of the doublet (11). The
U(2) symmetry of kinetic terms it clearly generic: start-

ing with i 
↵̇
i Ci

k @↵↵̇  k↵ where Ci
k is a Hermitian fla-

vor matrix, one can always diagonalize and normalize
these terms.
As for the mass terms they generically break both,

U(1) and SU(2) flavor symmetries, so no continuous sym-
metry remains. To see how the U(1) symmetry (2) as-
sociated with the baryon charge could survive note that
one can interpret U(2) transformations as acting on the
external mass matrix mik. This matrix is charged under
U(1), the overall phase rotation, so this U(1) symmetry
is always broken by nonvanishing mass. In respect to
SU(2) transformations the symmetric tensor mik is the
adjoint representation, i.e., can be viewed as an isovector
µa, a = 1, 2, 3,

mi
k = "ijmjk = µa(⌧a)ik , a = 1, 2, 3 , (14)

1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.
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of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(nc)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(nc) = �1.

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 i↵ , i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,
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using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  
↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵ k
↵ + mki  k ↵̇  

↵̇
i

i
,

(13)
where @↵↵̇ = �̄µ

↵↵̇@µ , �̄µ = {1,�~�}, mik is the sym-
metric mass matrix, mik = mki and mik = (mik)
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The kinetic term in (13) is U(2) symmetric: besides

flavor SU(2) rotations it includes also U(1) associated
with the overall phase rotation of the doublet (11). The
U(2) symmetry of kinetic terms it clearly generic: start-
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vor matrix, one can always diagonalize and normalize
these terms.
As for the mass terms they generically break both,

U(1) and SU(2) flavor symmetries, so no continuous sym-
metry remains. To see how the U(1) symmetry (2) as-
sociated with the baryon charge could survive note that
one can interpret U(2) transformations as acting on the
external mass matrix mik. This matrix is charged under
U(1), the overall phase rotation, so this U(1) symmetry
is always broken by nonvanishing mass. In respect to
SU(2) transformations the symmetric tensor mik is the
adjoint representation, i.e., can be viewed as an isovector
µa, a = 1, 2, 3,
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field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.
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(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (8)

where �0C�0 = �C is used. The opposite signs in
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that their mixing breaks P parity, and, indeed, the sub-
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C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.
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in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.

Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (10)

with P2
z = �1. Now Pz parities of n and nc are the

same and equal to i, so the mixing of n and nc does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .

Couple of related comments. First, preservation of
T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(nc)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(nc) = �1.

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 i↵ , i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  
↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵ k
↵ + mki  k ↵̇  

↵̇
i

i
,

(13)
where @↵↵̇ = �̄µ

↵↵̇@µ , �̄µ = {1,�~�}, mik is the sym-
metric mass matrix, mik = mki and mik = (mik)

⇤ is
its conjugate.
The kinetic term in (13) is U(2) symmetric: besides

flavor SU(2) rotations it includes also U(1) associated
with the overall phase rotation of the doublet (11). The
U(2) symmetry of kinetic terms it clearly generic: start-

ing with i 
↵̇
i Ci

k @↵↵̇  k↵ where Ci
k is a Hermitian fla-

vor matrix, one can always diagonalize and normalize
these terms.
As for the mass terms they generically break both,

U(1) and SU(2) flavor symmetries, so no continuous sym-
metry remains. To see how the U(1) symmetry (2) as-
sociated with the baryon charge could survive note that
one can interpret U(2) transformations as acting on the
external mass matrix mik. This matrix is charged under
U(1), the overall phase rotation, so this U(1) symmetry
is always broken by nonvanishing mass. In respect to
SU(2) transformations the symmetric tensor mik is the
adjoint representation, i.e., can be viewed as an isovector
µa, a = 1, 2, 3,

mi
k = "ijmjk = µa(⌧a)ik , a = 1, 2, 3 , (14)

1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.

2

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (8)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [4, 5].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1) phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(9)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.
When baryon charge is not conserved, i.e., �LB6 is

switched on, the only remnant of baryonic U(1) rota-
tions is a discrete Z4 symmetry, i.e., ↵ = ±⇡/2, ± ⇡
in Eq. (9). Indeed, for ↵ = ±⇡ it is just an original
P in Eq. (8) with P 2 = 1, and for ↵ = ±⇡/2 we have
P 2

±⇡/2 = �1 which is also allowed because of even num-
ber of fermion fields in the action, i.e., Z2 invariance.

Thus, it is possible to choose ↵ = ⇡/2 to define Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (10)

with P2
z = �1. Now Pz parities of n and nc are the

same and equal to i, so the mixing of n and nc does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .

Couple of related comments. First, preservation of
T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(nc)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(nc) = �1.

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [refs]. Here we apply this to mixing
of neutron and antineutron.

2. To show that the above consideration covers a generic
case it is convenient to introduce two left-handed Weyl
spinors, forming a flavor doublet1

 i↵ , i = 1, 2, ↵ = 1, 2 , (11)

together with their complex conjugates, representing the
right-handed spinors,

 
↵̇
i = ( i↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (12)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n these
two left-handed Weyl spinors are nL and (nR)⇤. The
most generic Lorentz invariant Lagrangian quadratic in
fermion fields is

L =  
↵̇
i i @↵↵̇  

i↵ �
1

2

h
mik 

i↵ k
↵ + mki  k ↵̇  

↵̇
i

i
,

(13)
where @↵↵̇ = �̄µ

↵↵̇@µ , �̄µ = {1,�~�}, mik is the sym-
metric mass matrix, mik = mki and mik = (mik)

⇤ is
its conjugate.
The kinetic term in (13) is U(2) symmetric: besides

flavor SU(2) rotations it includes also U(1) associated
with the overall phase rotation of the doublet (11). The
U(2) symmetry of kinetic terms it clearly generic: start-

ing with i 
↵̇
i Ci

k @↵↵̇  k↵ where Ci
k is a Hermitian fla-

vor matrix, one can always diagonalize and normalize
these terms.
As for the mass terms they generically break both,

U(1) and SU(2) flavor symmetries, so no continuous sym-
metry remains. To see how the U(1) symmetry (2) as-
sociated with the baryon charge could survive note that
one can interpret U(2) transformations as acting on the
external mass matrix mik. This matrix is charged under
U(1), the overall phase rotation, so this U(1) symmetry
is always broken by nonvanishing mass. In respect to
SU(2) transformations the symmetric tensor mik is the
adjoint representation, i.e., can be viewed as an isovector
µa, a = 1, 2, 3,

mi
k = "ijmjk = µa(⌧a)ik , a = 1, 2, 3 , (14)

1 See, e.g., the book [8] where it is graciously applied to description
of massive neutrinos.

2

field gets the mass m + ✏ while the mass of the C-odd
n2 is m � ✏.

Turn now to the parity transformation P. It involves
(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (8)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [3]. The definition (8) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (8) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
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one needs an interference of amplitudes and this is pro-
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with P2
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same and equal to i, so the mixing of n and nc does not
break Pz parity. It means that all discrete symmetries,
C, Pz and T are preserved by the baryon breaking term
�LB6 .

Couple of related comments. First, preservation of
T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(nc)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(nc) = �1.

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
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discussed long ago [refs]. Here we apply this to mixing
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we assume CPT symmetry (we note that a new study of �B = 2 Lorentz
invariance violating operators has recently appeared [6]). We denote the
e↵ective Hamiltonian that is responsible for n � n̄ oscillations as H

e↵

. The
transition matrix elements are taken to be real and are denoted
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lifetime of a free neutron. We define

�M ⌘ M
11

�M
22

(4)

The matrix of H
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We define
�E = E
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� E
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If one starts with a pure |ni state at t = 0, then there is a finite probability
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where ��1 = ⌧n = 880 s is the mean life of a free neutron. The di↵erence
�M incorporates any interaction e↵ects that are di↵erent for the neutron
and the antineutron. For example, the neutron-nucleus and antineutron-
nucleus strong interactions are very di↵erent, so that the proximity of matter
suppresses any oscillation that might otherwise be induced by the o↵-diagonal
matrix elements. For low-energy neutrons one can parametrize the neutron-
nucleus interaction in terms of a (complex) s-wave scattering amplitude, and
this scattering amplitude enters the Schrödinger equation for the neutron
and antineutron propagation in a medium through the neutron(antineutron)
optical potential. In addition, any ambient external magnetic field splits
the energy of neutron and antineutron states since they possess magnetic
moments of opposite sign.

It is important to understand from the beginning that the existing upper
bound on the magnitude of the o↵-diagonal term, |�m|, in the n� n̄ e↵ective
Hamiltonian is known to be less than approximately 10�29 MeV, which is
a very small energy, approximately 32 orders of magnitude smaller than
the mass of the neutron. This constraint means in practice that |�M | will
be orders of magnitude larger than |�m| for any conceivable experimental
environment. For example, in free space with an ambient magnetic field ~B,
�M = �2~µn · ~B, and

|~µn|B = (6.03⇥ 10�23 MeV)
⇣ B

10�9 Tesla

⌘
(11)

where B ⌘ | ~B|. Hence, the value of |�M | resulting from even a very small
1 nT external magnetic field is 0.6 ⇥ 10�22 MeV. This is much larger than
|�m|; in this case |�M/�m| ' 107.2

2
The very small value of |�m|, combined with the limited time of observation of a slow-

neutron ensemble in the gravitational field of the Earth, means that attempts to amplify

the transition rate by either resonant excitation or some sort of adiabatic level-crossing

mechanism, as in the well-analyzed case of neutrino oscillations in matter, seem to be

impractical to implement. As is evident from Eq. (7), the magnitude of the mixing angle

is very small, i.e., |✓| ⌧ 1. We can also consider the possibility of an adiabatic level crossing
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Magnetic field effects
Probability of       conversion is described by

an observation time t such that |~µn · ~B|t ⌧ 1 and also t ⌧ ⌧n. Then the
oscillation probability reduces to

P (n(t) = n̄) ' (2✓)2
⇣�Et

2

⌘
2

'
⇣ �m

~µn · ~B

⌘
2

⇣
~µn· ~B t

⌘
2

= [(�m) t]2 = (t/⌧n�n̄)
2 .

(24)
The number of n̄’s produced by the n� n̄ oscillations is given essentially by
Nn̄ = P (n(t) = n̄)Nn, where Nn = �T

run

, with � the neutron flux and T
run

the running time. The sensitivity of the experimental signal depends on the
product Nnt2, so, with adequate magnetic shielding, one wants to maximize
t, subject to the condition that |~µn · ~B|t ⌧ 1. A di↵erent approach to n� n̄
propagation via spin-flip transitions in an ambient magnetic field has recently
been proposed in [64].

2.3.3. n� n̄ Oscillations in Matter
In matter, the matrix M

A

takes the form [36]

M
A

=

✓
mn,e↵ �m
�m mn̄,e↵

◆
(25)

with
mn,e↵ = mn + Vn , mn̄,e↵ = mn + Vn̄ , (26)

where the nuclear potential Vn is practically real, Vn = VnR, but Vn̄ has a
large imaginary part representing the antineutron annihilation with another
nucleon,

Vn̄ = Vn̄R � iVn̄I , (27)

with [65, 66]
VnR, Vn̄R, Vn̄I ⇠ O(100) MeV . (28)

The mixing is thus strongly suppressed; tan(2✓) is determined by

2�m

|mn,e↵ �mn̄,e↵ |
=

2�mp
(VnR � Vn̄R)2 + V 2

n̄I

⌧ 1 . (29)

The eigenvalues from the diagonalization of M
A

are

E
1,2 =

1

2

h
mn,e↵ +mn̄,e↵ ±

q
(mn,e↵ �mn̄,e↵)2 + 4(�m)2

i
. (30)
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Experimentally (ILL, Grenoble)

• the capability to turn o↵ any non-zero n � n̄ signal with a modest
increase in the magnetic field to lift the n � n̄ energy degeneracy and
thereby strongly damp out the oscillations,

• the opportunity to achieve orders of magnitude improvement in sensi-
tivity over the current free neutron limit through the use of existing
neutron optics technology to greatly increase the integrated neutron
fluence and average free observation time to the annihilation target.

We believe that these advantages provide a strong experimental motivation
to search for n� n̄ oscillations in a dedicated experiment.

3.1. Previous Free Neutron Searches for n� n̄ Oscillations

The current best limit for an experimental search for free n�n̄ oscillations
was performed at the Institut Laue-Langevin (ILL) in Grenoble in the early
1990’s [63] and two previous measurements at ILL and Pavia University’s
Triga Mark II reactor in the mid-1980’s and early 1990’s [85, 86] (see Fig. 2).
The ILL experiment used a cold neutron beam from their 58 MW research
reactor with a neutron current of 1.25⇥1011n/s incident on the annihilation
target and achieved a limit of ⌧n�n̄ > 0.86⇥ 108 s [63]. The average velocity
of the cold neutrons was ⇠ 600 m/s and the average neutron observation
time was ⇠ 0.1 s. A vacuum of P ' 2⇥ 10�4 Pa maintained in the neutron
flight volume and a magnetic field of | ~B| < 10 nT satisfied the quasi-free
conditions for oscillations to occur [87–89]. Antineutron appearance was
sought through annihilation with a ⇠ 130 µm thick carbon film target which
generated at least two tracks (one due to a charged particle) in the tracking
detector with a total energy above 850 MeV in the surrounding calorimeter.
In one year of operation the ILL experiment saw zero candidate events with
zero background [63] using a tracking detector with crude (several cm) spatial
resolution for the annihilation vertex compared with present technology. We
feel that this impressively clean experiment o↵ers strong encouragement to
believe that the sensitivity of an upgraded experiment along the same lines
could be improved given the great progress made in slow neutron optics since
this experiment was performed.

3.2. Improved Free Neutron Searches for n� n̄ Oscillations

The last two decades have seen considerable advances in the technologies
of neutron transport/optics and neutron moderation, and these developments
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Nuclear stability (Super-K) gives about 3 times larger 
value for the lower limit.
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We analyze discrete symmetries in the amplitude of neutron-antineutron transition breaking con-
servation of baryon charge. While all discrete symmetries, C, P and T, are preserved at the level
of free particles, non-conservation of baryon charge leads to certain specifics in their definitions.
Although an existence of the oscillation does not automatically imply CP violation it influences the
form of CP-odd interaction. We also show that presence of external magnetic field does not add
any new operator to mixing of neutron and antineutron provided that rotational invariance is not
broken.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
as a coe�cient for nT

Cn can be always achieved by the
phase rotation (2) of n field. Another |�B| = 2 term
of the form n

T
C�5n can be rotated away by the chiral

rotation n ! ei��5
n.

Also mixed kinetic terms/ in̄�

µ
C@µn̄

T+h.c. can be
turned away with redefinition of the fermion field. Hence,
a generic Lagrangian containing the fermion bilinears can
always be brought to a form containing only the terms
(1) and (3).

What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)

It is simple to verify that both Lagrangians above, (1)
and (3), are C invariant. Indeed, they could be rewritten



No new               operators appear,                     and
                       vanish  due to Fermi statistics.     
                                                  Voloshin ’88 for neutrino

This is not spoiled by a composite nature of the neutron, 
as it was suggested by Gardner & Jafari ’14.

Can be checked in the crossing channel

6 ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

So while C parity is preserved, we have P even, Eq. (1), and P odd, Eqs. (3), (4), mass
terms. Thus, we proved for generic case the association of baryon charge breaking with
CP violation.

Note that in terms of remaining 3 parameters the masses of C even and C odd Majorana
fermions are

(21) M2
1 = (m + ✏)2 + (m0)2 , M2

2 = (m � ✏)2 + (m0)2 ,

what di↵erent from standard expressions when m0 is nonvanishing. In particular, it implies
that the oscillation time ⌧nn̄ in free neutron transition probability, Pnn̄(t) = sin2(t/⌧nn̄)

is
p

1 + (m0/m)2/✏ instead of 1/✏.
The CP odd nature of the operator (4) was noted recently in Ref. [4]. However, the

authors of this paper discussed also the CP even operator nT�5Cn which, as we showed,
can be rotated away by field redefinition. These authors also analyzed modifications in-
duced by external magnetic field claiming an existence of a new n� n̄ transition magnetic
moment and also an absence of the usual suppression of n � n̄ oscillation in presence of
magnetic field. We will show below that both claims are invalid.

3. Our consideration above refers to the neutron-antineutron oscillation in vacuum. Now
we show that even in the presence of magnetic field no new |�B| = 2 operator appears.
Similar consideration was done in Ref. [5] in application to magnetic moment of neutrinos.

In the Weyl formalism the field strengths tensor Fµ⌫ is substituted by the symmetric
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Antisymmetry in flavor indices implies that spinors with the opposite baryon charge enter.
So both operators preserve the baryon charge, they describe interactions with the magnetic
and electric dipole moments of the neutron.

The authors of [4] realize that the operator nT�µ⌫CnFµ⌫ is vanishing due to Fermi
statistics. They believe, however, that a composite nature of neutron changes the situation
and a new type of magnetic moment in �B = ±2 transitions may present. In other words
they think that the e↵ective Lagrangian description is broken for composite particles.

To show that is not the case let us consider the process

(23) n(p1) + n(p2) ! �⇤(k)

in the crossing channel to n � n̄�⇤ transition. The number of invariant amplitudes for
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momentum L = 1 and total spin S = 1 in two neutron system are allowed by angular
momentum conservation and Fermi statistics. The gauge-invariant form of the amplitude
is

(24) uT(p1)C�
µ�5u(p2) k
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NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP

VIOLATION

ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P2 = 1

P :

P 2
↵ = e2iB↵ 6= 1

P 2
z = �1

↵ = ⇡/2

CPz

�B = ±1

nT�5�
µ⌫CnFµ⌫

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n
2

We also checked that the external magnetic field does 
suppress neutron-antineutron oscillations in contrast to
the claim by                            .Gardner & Jafari ’14
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operators

(25) O =
1

M5
uddudd

involving u and d quarks of di↵erent families in di↵erent color and Lorentz invariant
combinations (all possible convolutions of spinor indices are omitted). The smallness of
baryon violation is related to the large mass scale M related to new physics.

In fact, the B breaking mass term (4) emerges by taking matrix element between n and
n̄ states of the operator structures (25), see diagram in Fig. 1,

(26) �
1

2
✏ hn̄|nTCn|ni = hn̄|O|ni .

It gives an estimate of order ⇤6
QCD/M5 for the parameter ✏ which describes the oscillation

time.
Our consideration shows that only operators which are C even and P odd contribute to

the above matrix element (up to small corrections due to electroweak interactions where
the discrete symmetries are broken). In general, operators coming from physics beyond
SM do not respect any of discrete symmetries C, P and CP. If, however, a new physics
model produces B violating operators which do not satisfy the selection rules of n �
n̄ transition, their e↵ect will show up in instability of nuclei but not in free neutron-
antineutron oscillations. Indeed, such operators would induce processes of annihilation of
two nucleons like N + N ! ⇡ + ⇡ inside nucleus, as shown on Fig. 2.

The operators of the type of (25) involving strange quark, udsuds, could induce ⇤� ⇤̄
mixing. However, such operators would also lead to nuclear instability via nucleon annihi-
lation into kaons N+N ! K+K, see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact, nuclear instability bounds on ⇤� ⇤̄
mixing are only mildly, within an order of magnitude, weaker than with respect to n� n̄
mixing which makes hopeless the possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the nuclear decays into kaons in the large
volume detectors.) The nuclear instability limits on ⇤ � ⇤̄ mixing are about 15 orders
of magnitude stronger than the sensitivity �⇤⇤̄ ⇠ 10�6 eV which can be achieved in the
laboratory conditions [8]. The nuclear stability limits make hopeless also the laboratory
search of bus-like baryon oscillation due to operator usbusb suggested in Ref. [9].

6. The construction we used for neutron-antineutron transition could be applied to mixing
of massive neutrinos. As an example, let us take the system of left-handed ⌫e and ⌫µ
and their conjugated partners, right-handed ⌫̄e and ⌫̄µ. One can ascribe them [10] a flavor
charge F = Le�Lµ (analog of B), to be (+1) for ⌫e and (-1) for ⌫µ. Then, C conjugation
is interchange of ⌫e and ⌫µ. Again, F breaking mass term would be C even and P odd.

A similar scenario can be played in case of Dirac massive neutrino.

7. In summary, we show that the Lorentz and CPT invariance lead to the unique |�B| =
2 operator in the neutron-antineutron mixing. This operator is CP odd. Switching on
external magnetic field influences the level splitting what suppresses n � n̄ oscillations
but does not add any new |�B| = 2 operator in contradistinction with recent claims in
literature.

Interesting to note that observation of neutron-antineutron transition would show that
two of three Sakharov conditions for baryogenesis are satisfied, violations of B � L and

4

no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [9] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [9]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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by two units can originate only from new physics beyond
SM which would induce the e↵ective six-quark operators
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involving up and down quarks of di↵erent families in dif-
ferent color and Lorentz invariant combinations (all pos-
sible convolutions of spinor indices are omitted). The
smallness of baryon violation is related to the large mass
scale M associated with new physics.
In fact, the B breaking mass term (3) emerges by tak-

ing matrix element between n and n̄ states of the oper-
ator structures (25), see diagram in Fig. 1,
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It gives an estimate of order ⇤6
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Our consideration shows that only operators which are

C and Pz even (odd in terms of P) contribute to the
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to electroweak interactions where the discrete symmetries
are broken. In general, operators coming from physics be-
yond SM do not respect any of discrete symmetriesC, Pz

or CPz. If, however, a new physics model produces B vi-
olating operators which do not satisfy the selection rules
of n�n̄ transition, their e↵ect will show up in instability
of nuclei but not in free neutron-antineutron oscillations.
Indeed, such operators would induce processes of anni-
hilation of two nucleons like N + N ! ⇡ + ⇡ inside
nucleus, as shown on Fig. 2.
The operators of the type of (25) involving strange
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such operators would also lead to nuclear instability via
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olating operators which do not satisfy the selection rules
of n�n̄ transition, their e↵ect will show up in instability
of nuclei but not in free neutron-antineutron oscillations.
Indeed, such operators would induce processes of anni-
hilation of two nucleons like N + N ! ⇡ + ⇡ inside
nucleus, as shown on Fig. 2.
The operators of the type of (25) involving strange

quark, udsuds, could induce ⇤ � ⇤̄ mixing. However,
such operators would also lead to nuclear instability via
nucleon annihilation into kaons N + N ! K + K,
see the diagram in Fig. 2 where in upper lines d quark

4

no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [9] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [9]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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(25)

by two units can originate only from new physics beyond
SM which would induce the e↵ective six-quark operators

O =
1

M5
uddudd (25)

involving up and down quarks of di↵erent families in dif-
ferent color and Lorentz invariant combinations (all pos-
sible convolutions of spinor indices are omitted). The
smallness of baryon violation is related to the large mass
scale M associated with new physics.
In fact, the B breaking mass term (3) emerges by tak-

ing matrix element between n and n̄ states of the oper-
ator structures (25), see diagram in Fig. 1,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
= hn̄|O|ni + H.c. .

(26)
It gives an estimate of order ⇤6

QCD/M5 for the param-
eter ✏ which describes the oscillation time.

✏ ⇠
⇤6

QCD

M5

Our consideration shows that only operators which are
C and Pz even (odd in terms of P) contribute to the
above matrix element. It is up to small corrections due
to electroweak interactions where the discrete symmetries
are broken. In general, operators coming from physics be-
yond SM do not respect any of discrete symmetriesC, Pz

or CPz. If, however, a new physics model produces B vi-
olating operators which do not satisfy the selection rules
of n�n̄ transition, their e↵ect will show up in instability
of nuclei but not in free neutron-antineutron oscillations.
Indeed, such operators would induce processes of anni-
hilation of two nucleons like N + N ! ⇡ + ⇡ inside
nucleus, as shown on Fig. 2.
The operators of the type of (25) involving strange

quark, udsuds, could induce ⇤ � ⇤̄ mixing. However,

Only     and      even              operators contribute to 
oscillations. Others leads to instability of nuclei.
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authors of [9] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [9]) which depend on
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invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
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tude is of di↵erent sign for spins up and down. Changing
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transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
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by two units can originate only from new physics beyond
SM which would induce the e↵ective six-quark operators

O =
1

M5
uddudd (25)

involving up and down quarks of di↵erent families in dif-
ferent color and Lorentz invariant combinations (all pos-
sible convolutions of spinor indices are omitted). The
smallness of baryon violation is related to the large mass
scale M associated with new physics.
In fact, the B breaking mass term (3) emerges by tak-

ing matrix element between n and n̄ states of the oper-
ator structures (25), see diagram in Fig. 1,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
= hn̄|O|ni + H.c. .

(26)
It gives an estimate of order ⇤6

QCD/M5 for the param-
eter ✏ which describes the oscillation time.
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M5

Our consideration shows that only operators which are
C and Pz even (odd in terms of P) contribute to the
above matrix element. It is up to small corrections due
to electroweak interactions where the discrete symmetries
are broken. In general, operators coming from physics be-
yond SM do not respect any of discrete symmetriesC, Pz

or CPz. If, however, a new physics model produces B vi-
olating operators which do not satisfy the selection rules
of n�n̄ transition, their e↵ect will show up in instability
of nuclei but not in free neutron-antineutron oscillations.
Indeed, such operators would induce processes of anni-
hilation of two nucleons like N + N ! ⇡ + ⇡ inside
nucleus, as shown on Fig. 2.
The operators of the type of (25) involving strange

quark, udsuds, could induce ⇤ � ⇤̄ mixing. However,

5

is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [13]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [14].

6. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [15] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

7. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same

value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could useful for classification of |�B| = 2
operators coming from new physics, particularly in asso-
ciation with Sakharov conditions for baryogenesis which
involves both, non-conservation of baryon charge and
CP-violation.
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operators

(25) O =
1

M5
uddudd

involving u and d quarks of di↵erent families in di↵erent color and Lorentz invariant
combinations (all possible convolutions of spinor indices are omitted). The smallness of
baryon violation is related to the large mass scale M related to new physics.

In fact, the B breaking mass term (4) emerges by taking matrix element between n and
n̄ states of the operator structures (25), see diagram in Fig. 1,

(26) �
1

2
✏ hn̄|nTCn|ni = hn̄|O|ni .

It gives an estimate of order ⇤6
QCD/M5 for the parameter ✏ which describes the oscillation

time.
Our consideration shows that only operators which are C even and P odd contribute to

the above matrix element (up to small corrections due to electroweak interactions where
the discrete symmetries are broken). In general, operators coming from physics beyond
SM do not respect any of discrete symmetries C, P and CP. If, however, a new physics
model produces B violating operators which do not satisfy the selection rules of n �
n̄ transition, their e↵ect will show up in instability of nuclei but not in free neutron-
antineutron oscillations. Indeed, such operators would induce processes of annihilation of
two nucleons like N + N ! ⇡ + ⇡ inside nucleus, as shown on Fig. 2.

The operators of the type of (25) involving strange quark, udsuds, could induce ⇤� ⇤̄
mixing. However, such operators would also lead to nuclear instability via nucleon annihi-
lation into kaons N+N ! K+K, see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact, nuclear instability bounds on ⇤� ⇤̄
mixing are only mildly, within an order of magnitude, weaker than with respect to n� n̄
mixing which makes hopeless the possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the nuclear decays into kaons in the large
volume detectors.) The nuclear instability limits on ⇤ � ⇤̄ mixing are about 15 orders
of magnitude stronger than the sensitivity �⇤⇤̄ ⇠ 10�6 eV which can be achieved in the
laboratory conditions [8]. The nuclear stability limits make hopeless also the laboratory
search of bus-like baryon oscillation due to operator usbusb suggested in Ref. [9].

6. The construction we used for neutron-antineutron transition could be applied to mixing
of massive neutrinos. As an example, let us take the system of left-handed ⌫e and ⌫µ
and their conjugated partners, right-handed ⌫̄e and ⌫̄µ. One can ascribe them [10] a flavor
charge F = Le�Lµ (analog of B), to be (+1) for ⌫e and (-1) for ⌫µ. Then, C conjugation
is interchange of ⌫e and ⌫µ. Again, F breaking mass term would be C even and P odd.

A similar scenario can be played in case of Dirac massive neutrino.

7. In summary, we show that the Lorentz and CPT invariance lead to the unique |�B| =
2 operator in the neutron-antineutron mixing. This operator is CP odd. Switching on
external magnetic field influences the level splitting what suppresses n � n̄ oscillations
but does not add any new |�B| = 2 operator in contradistinction with recent claims in
literature.

Interesting to note that observation of neutron-antineutron transition would show that
two of three Sakharov conditions for baryogenesis are satisfied, violations of B � L and

4

Even in the absence of new n�n̄ magnetic moment the
authors of [9] claim that suppression of n� n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [9]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong
sign of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Chang-
ing sign of H34 and H43 restores rotational invariance,
the eigenvalues become E = M1 ±

p
!2
0 + !2

1 + �2, each
doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an ex-
ample which involves spin flip and, correspondingly, less
dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B
by two units can originate only from new physics beyond
SM which would induce the e↵ective six-quark operators

O =
1

M5
uddudd (25)

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT �µ⌫Cn0Fµ⌫ are allowed. Hence, n� n0 and/or n� n̄0 transi-
tion probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is ex-
tremely small.
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involving up and down quarks of di↵erent families in dif-
ferent color and Lorentz invariant combinations (all pos-
sible convolutions of spinor indices are omitted). The
smallness of baryon violation is related to the large mass
scale M associated with new physics.
In fact, the B breaking mass term (3) emerges by tak-

ing matrix element between n and n̄ states of the operator
structures (25), see diagram in Fig. 1,

�LB6 = �1

2
✏
⇥
nTCn+ n̄Cn̄T

⇤
= hn̄|O|ni+H.c. . (26)

It gives an estimate of order ⇤6
QCD/M

5 for the parameter
✏ which describes the oscillation time.
Our consideration shows that only operators which are

C and Pz even (odd in terms of P) contribute to the
above matrix element. It is up to small corrections due
to electroweak interactions where the discrete symmetries
are broken. In general, operators coming from physics be-
yond SM do not respect any of discrete symmetriesC, Pz

or CPz. If, however, a new physics model produces B vi-
olating operators which do not satisfy the selection rules
of n� n̄ transition, their e↵ect will show up in instability
of nuclei but not in free neutron-antineutron oscillations.
Indeed, such operators would induce processes of annihi-
lation of two nucleons like N+N ! ⇡+⇡ inside nucleus,
as shown on Fig. 2.
The operators of the type of (25) involving strange

quark, udsuds, could induce ⇤ � ⇤̄ mixing. However,
such operators would also lead to nuclear instability via
nucleon annihilation into kaons N + N ! K + K, see
the diagram in Fig. 2 where in upper lines d quark is
substituted by s quark (and ⇡+ by K+). In fact, nuclear
instability bounds on ⇤ � ⇤̄ mixing are only mildly,
within an order of magnitude, weaker than with respect
to n � n̄ mixing which makes hopeless the possibility to
detect ⇤ � ⇤̄ oscillation in the hyperon beam. (Instead,
it can be of interest to search for the nuclear decays
into kaons in the large volume detectors.) The nuclear

4

no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [9] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [9]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.

!

!

"

!

!

"! !! "!

FIG. 1. Diagram for generating n � n̄ mixing terms

!!
!

"

"

!!
!

"

"

"
!#$

"
!

#$

FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
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by two units can originate only from new physics beyond
SM which would induce the e↵ective six-quark operators

O =
1

M5
uddudd (25)

involving up and down quarks of di↵erent families in dif-
ferent color and Lorentz invariant combinations (all pos-
sible convolutions of spinor indices are omitted). The
smallness of baryon violation is related to the large mass
scale M associated with new physics.
In fact, the B breaking mass term (3) emerges by tak-

ing matrix element between n and n̄ states of the oper-
ator structures (25), see diagram in Fig. 1,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
= hn̄|O|ni + H.c. .

(26)
It gives an estimate of order ⇤6

QCD/M5 for the param-
eter ✏ which describes the oscillation time.

✏ ⇠
⇤6

QCD

M5

Our consideration shows that only operators which are
C and Pz even (odd in terms of P) contribute to the
above matrix element. It is up to small corrections due
to electroweak interactions where the discrete symmetries
are broken. In general, operators coming from physics be-
yond SM do not respect any of discrete symmetriesC, Pz

or CPz. If, however, a new physics model produces B vi-
olating operators which do not satisfy the selection rules
of n�n̄ transition, their e↵ect will show up in instability
of nuclei but not in free neutron-antineutron oscillations.
Indeed, such operators would induce processes of anni-
hilation of two nucleons like N + N ! ⇡ + ⇡ inside
nucleus, as shown on Fig. 2.
The operators of the type of (25) involving strange

quark, udsuds, could induce ⇤ � ⇤̄ mixing. However,



 In the Standard Model and with u- and d-quarks 

5

direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(31)

In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
nn̄

⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],

O1
�1�2�3

= uiT

�1
Cuj

�1
d kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O2
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O3
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ijm

✏
kln

+

✏
ijn

✏
klm

⇤
.

(34)

Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
�LR

= O1
�RL

, O2,3
LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.
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direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(31)

In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
nn̄

⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],

O1
�1�2�3

= uiT

�1
Cuj

�1
d kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O2
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O3
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ijm

✏
kln

+

✏
ijn

✏
klm

⇤
.

(34)

Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
�LR

= O1
�RL

, O2,3
LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.

5

direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(31)

In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
nn̄

⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],

O1
�1�2�3

= uiT

�1
Cuj

�1
d kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O2
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O3
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ijm

✏
kln

+

✏
ijn

✏
klm

⇤
.

(34)

Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
�LR

= O1
�RL

, O2,3
LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.

 14 operators overall accounting for             transitions
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direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(31)

In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
nn̄

⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],

O1
�1�2�3

= uiT

�1
Cuj

�1
d kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O2
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ikm

✏
jln

+

✏
ikn

✏
jlm

+ ✏
jkm

✏
nil

+ ✏
jkn

✏
ilm

⇤
,

O3
�1�2�3

= uiT

�1
Cdj

�1
u kT

�2
Cd l

�2
dmT

�3
Cdn

�3

⇥
✏
ijm

✏
kln

+

✏
ijn

✏
klm

⇤
.

(34)

Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
�LR

= O1
�RL

, O2,3
LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions. plus another 14 Hermitian conjugated,           transitions. 
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direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(31)

In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
nn̄

⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],

O1
�1�2�3
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Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
�LR

= O1
�RL

, O2,3
LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.

5

direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
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In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
nn̄

⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],
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Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
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= O1
�RL
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LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.
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direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
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⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],
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Here �
i

stands for L or R quark chirality. Accounting
for relations
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,
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0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.
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direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [9] is also in-
correct – after a change of variables indicated in [9] the
consideration is similar to the first example with time-
independent field.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [9] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.4

4. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [12] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

5. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.5 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
c
i

Oi ,

Oi = T i

A1A2A3A4A5A6
qA1qA2qA3qA4qA5qA6 ,

(31)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

4 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [11]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

5 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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In particular, the nn̄ mixing term (4) emerges as a
matrix element between n and n̄ states of the operator
(31), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄

C u
n

, (32)

where u
n

, v
n̄

are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧

nn̄

, is

✏ =
1

⌧
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⇠
⇤6

QCD

M5
. (33)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[13, 14],
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Here �
i

stands for L or R quark chirality. Accounting
for relations

O1
�LR

= O1
�RL

, O2,3
LR�

= O2,3
RL�

,

O2
���

0 � O1
���

0 = 3O3
���

0 ,
(35)

we deal with 14 operators for �B = �2 transitions.



Only 7 out of 28 operators, which preserve C, P and CP, 
contribute to the neutron-antineutron transition,  

6

Only combinations of operators which are P
z

even
(odd in terms of P) contribute to the nn̄ matrix ele-
ment (32). It is, of course, up to small corrections due
to electroweak interactions where the discrete symme-
tries are broken. The P

z

reflection interchanges L and
R chirality �

i

in the operators Oi

�1�2�3
. Thus, only 7

combinations

Oi

�1�2�3
+ L $ R (36)

of 14 operators contribute to nn̄ mixing.
What about the remaining P

z

odd combinations�
Oi

�1�2�3
� L $ R

�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†. So,

it is 14 operators Oi

�1�2�3
+H.c. which preserves the bf

C invariance and 14 C-odd operators Oi

�1�2�3
� H.c..

Seven operators

⇥
Oi

�1�2�3
+ L $ R

⇤
+ H.c., (37)

which are both P
z

and C even are the only ones which
contributes to nn̄ oscillations when we neglect by SM
electroweak corrections. There are 7 operators which are
both P

z

and C odd but CP
z

even, and 14 which are
CP

z

odd.
Note that the number of C odd operator coe�cients

is slightly diminished by phase redefinition of ui and di

fields.

6. The operators of the type of (31) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [15]. The nuclear stability limits make

hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [16].

7. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫
e

and ⌫
µ

and their conjugated partners, right-handed
⌫̄
e

and ⌫̄
µ

. One can ascribe them [17] a flavor charge
F = L

e

�L
µ

(analog of B), to be (+1) for ⌫
e

and (-1)
for ⌫

µ

. Then, C conjugation is interchange of ⌫
e

and ⌫
µ

.
Again, F breaking mass term would be C and P

z

even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

8. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityP

z

which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.
We also showed that switching on external magnetic

field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.
Our analysis could useful for classification of |�B| = 2

operators coming from new physics, particularly in asso-
ciation with Sakharov conditions for baryogenesis which
involves both, non-conservation of baryon charge and
CP-violation.
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We analyze discrete symmetries in the amplitude of neutron-antineutron transition breaking con-
servation of baryon charge. While all discrete symmetries, C, P and T, are preserved at the level
of free particles, non-conservation of baryon charge leads to certain specifics in their definitions.
Although an existence of the oscillation does not automatically imply CP violation it influences the
form of CP-odd interaction. We also show that presence of external magnetic field does not add
any new operator to mixing of neutron and antineutron provided that rotational invariance is not
broken.
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we would like to address possible signals of
CP violatiion in the |�B| = 2 transitions. We also an-
alyze e↵ects of external magnetic field and show that it
does not add any new |�B| = 2 operator if the rota-
tional invariance is not broken.
Let us start with the Dirac Lagrangian

LD = in̄�

µ
@µn � mn̄n (1)

with four-component spinor n and the mass parameter
m which is real and positive. The Lagrangian gives
the Lorentz-invariant description of free neutron and an-
tineutron states and preserves the baryon charge, B = 1
for n and B = �1 for n̄. This conservation corresponds
to the continuous U(1) symmetry

n ! ei↵n, n̄ ! e�i↵
n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1. two spin doublets
which di↵er by the baryon charge B. Note that another
bilinear mass term, �Lm0 = �im

0
n̄�5n , consistent

with the baryon charge conservation, can be rotated away
by chiral transformation n ! ei��5

n.

How the baryon number nonconservation shows up at
the level of free one-particle states? In Lagrangian de-
scription it could be only modification of the bilinear
mass term. We show below that the most generic Lorentz
invariant modification of Eq. (1) reduces to one possibil-
ity for the baryon charge breaking by two units,

�LB6 = �
1

2
✏

⇥
n

T
Cn + n̄Cn̄

T
⇤
. (3)

Here C = i�

2
�

0 is the charge conjugation matrix in the
standard representation of gamma matrices, and ✏ is a
real positive parameter. The reality and positivity of ✏
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T
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µ
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What is the status of discrete C, P and T symmetries
under the baryon charge breaking modifications (3)? Let
us consider the charge conjugation C,

n ! n

c = Cn̄

T
. (4)
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(25) O =
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involving u and d quarks of di↵erent families in di↵erent color and Lorentz invariant
combinations (all possible convolutions of spinor indices are omitted). The smallness of
baryon violation is related to the large mass scale M related to new physics.

In fact, the B breaking mass term (4) emerges by taking matrix element between n and
n̄ states of the operator structures (25), see diagram in Fig. 1,
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✏ hn̄|nTCn|ni = hn̄|O|ni .

It gives an estimate of order ⇤6
QCD/M5 for the parameter ✏ which describes the oscillation

time.
Our consideration shows that only operators which are C even and P odd contribute to

the above matrix element (up to small corrections due to electroweak interactions where
the discrete symmetries are broken). In general, operators coming from physics beyond
SM do not respect any of discrete symmetries C, P and CP. If, however, a new physics
model produces B violating operators which do not satisfy the selection rules of n �
n̄ transition, their e↵ect will show up in instability of nuclei but not in free neutron-
antineutron oscillations. Indeed, such operators would induce processes of annihilation of
two nucleons like N + N ! ⇡ + ⇡ inside nucleus, as shown on Fig. 2.

The operators of the type of (25) involving strange quark, udsuds, could induce ⇤� ⇤̄
mixing. However, such operators would also lead to nuclear instability via nucleon annihi-
lation into kaons N+N ! K+K, see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact, nuclear instability bounds on ⇤� ⇤̄
mixing are only mildly, within an order of magnitude, weaker than with respect to n� n̄
mixing which makes hopeless the possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the nuclear decays into kaons in the large
volume detectors.) The nuclear instability limits on ⇤ � ⇤̄ mixing are about 15 orders
of magnitude stronger than the sensitivity �⇤⇤̄ ⇠ 10�6 eV which can be achieved in the
laboratory conditions [8]. The nuclear stability limits make hopeless also the laboratory
search of bus-like baryon oscillation due to operator usbusb suggested in Ref. [9].

6. The construction we used for neutron-antineutron transition could be applied to mixing
of massive neutrinos. As an example, let us take the system of left-handed ⌫e and ⌫µ
and their conjugated partners, right-handed ⌫̄e and ⌫̄µ. One can ascribe them [10] a flavor
charge F = Le�Lµ (analog of B), to be (+1) for ⌫e and (-1) for ⌫µ. Then, C conjugation
is interchange of ⌫e and ⌫µ. Again, F breaking mass term would be C even and P odd.

A similar scenario can be played in case of Dirac massive neutrino.

7. In summary, we show that the Lorentz and CPT invariance lead to the unique |�B| =
2 operator in the neutron-antineutron mixing. This operator is CP odd. Switching on
external magnetic field influences the level splitting what suppresses n � n̄ oscillations
but does not add any new |�B| = 2 operator in contradistinction with recent claims in
literature.

Interesting to note that observation of neutron-antineutron transition would show that
two of three Sakharov conditions for baryogenesis are satisfied, violations of B � L and

We also show that switching on an external magnetic field 
does not add any new              operator and suppress the 
oscillations. 

Could be useful for classification of operators coming 
from new physics. Particular, in application to baryogenesis. 
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A similar scenario can be staged in case of Dirac
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7. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
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This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same

value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the
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0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could useful for classification of |�B| = 2
operators coming from new physics, particularly in asso-
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Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
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0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.
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to separate CP conserving and CP breaking parts one
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tor in contradistinction with recent claims in literature.

Our analysis could useful for classification of |�B| = 2
operators coming from new physics, particularly in asso-
ciation with Sakharov conditions for baryogenesis which
involves both, non-conservation of baryon charge and
CP-violation.

We thank Susan Gardner, Yuri Kamyshkov, Kirill Mel-
nikov, Rabi Mohapatra, Adam Ritz and Misha Voloshin
for helpful discussions. A.V. appreciates hospitality of
the Kavli Institute for Theoretical Physics where his re-
search was supported in part by the National Science
Foundation under Grant No. NSF PHY11-25915. The
work of Z.B. was supported in part by the MIUR tri-
ennal grant for Research Projects of National Interest
PRIN No. 2012CPPYP7 “Astroparticle Physics”, and in
part by Rustaveli National Science Foundation grant No.
DI/8/6-100/12.

[1] V.A. Kuzmin, Pisma Zh. Eksp. Teor. Fiz. 12, 335 (1970);
R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett.
44, 1316 (1980).

[2] D.G. Phillips, II, W.M. Snow, K. Babu, et al., “Neutron-
Antineutron Oscillations: Theoretical Status and Exper-
imental Prospects,” [arXiv:1410.1100 [hep-ex]]

[3] V. B. Berestetskii, Zh. Eksp. Teor. Fiz. 10 21, 1321 (1951)
[4] V.B. Berestetsky, E.M. Lifshitz and L. P. Pitaevsky,

Quantum Electrodynamics, Oxford, UK: Pergamon (
1982) ( Course Of Theoretical Physics, 4)

[5] M. E. Peskin and D. V. Schroeder, An Introduction to

quantum field theory, Reading, USA: Addison-Wesley
(1995)

[6] P. Ramond, Journeys Beyond the Standard Model,
Reading, Mass., Perseus Books, 1999

[7] M. B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.
Fiz. 48, 804 (1988)].

[8] See e.g. in P. Ramond, “Journeys Beyond the Standard

Model,” Reading, Mass., Perseus Books, 1999, where the
Weyl formalism is gracefully applied to description of
massive neutrinos.

[9] S. Gardner and E. Jafari, Phys. Rev. D 91, no. 9, 096010
(2015) [arXiv:1408.2264 [hep-ph]].

[10] M.B. Voloshin, Sov. J. Nucl. Phys. 48, 512 (1988) [Yad.
Fiz. 48, 804 (1988)].

[11] Z. Berezhiani and L. Bento, Phys. Rev. Lett. 96, 081801
(2006) [hep-ph/0507031]; Z. Berezhiani, Eur. Phys. J. C
64, 421 (2009) [arXiv:0804.2088 [hep-ph]].

[12] K. S. Babu and R.N. Mohapatra, Phys. Rev. D 91, no.
9, 096009 (2015) [arXiv:1504.01176 [hep-ph]].

[13] X.W. Kang, H.B. Li and G.R. Lu, Phys. Rev. D 81,
051901 (2010) [arXiv:0906.0230 [hep-ph]].

[14] V.A. Kuzmin, In *Oak Ridge 1996, Future prospects of
baryon instability search* 89-91 [hep-ph/9609253].

[15] Ya. B. Zeldovich, Dokl. Akad. Nauk SSSR 86, 505 (1952);
E. J. Konopinski and H.M. Mahmoud, Phys. Rev. 92,
1045 (1953).


