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I. Introduction 
The resonance-like structures, corresponding to simple 

modes of nuclear excitations (single-quasiparticle- and 
particle-hole-type) are observed in nuclear reactions at 
high excitation energies (up to a few tens of MeV). 
Therefore, for these energies the mean-field concept does 
work, or (that is the same) nuclei are “grey” (not “black”) 
for the mentioned degrees of freedom. 

To describe coupling of these high-energy modes to 
many-quasiparticle (chaotic) states (the spreading effect) 
only a phenomenological way seems to be realistic and 
related to the corresponding optical models. 
Microscopically-based transition to these models is based 
on many-body Green function method introduced in 
nuclear physics by Migdal [1]. 



The main topic of this presentation is the 
description of the recently developed particle-
hole dispersive optical model (PHDOM) and 
first implementations of this model. The 
“traditional” single-quasiparticle dispersive 
optical model (SQDOM) is also discussed 
together with a description of deep-hole 
states. 



II.  PHDOM 

1. General description (“in words”) 
 

1.1. The particle–hole dispersive optical model is 
developed recently [2] to describe in a semimicroscopic 
way the main properties of a great variety of high-energy 
(p-h)-type nuclear excitations (including giant resonances) 
in “hard” medium-heavy mass spherical nuclei. 

 
1.2. Within the model, the main relaxation modes of the 
above-mentioned excitations are commonly taken into 
account. 

 



These modes are: 
(i) distribution of the p-h strength, or Landau 

damping ,~  the result of shell structure of 
nuclei; 

(ii) coupling of (p-h)-type states to the s.p. 
continuum ~ nuclei are the open Fermi-
systems; 

(iii)coupling of (p-h)-type states to many quasi-
particle (chaotic) configurations, or the 
spreading effect  ~  high  excitation energies.        

    
 



1.3. Within the PHDOM, which is a   semi-
microscopic model, Landau damping and 
coupling to the s.p. continuum are described  
microscopically (in terms of a mean field  and 
p-h interaction), while the spreading effect is 
treated phenomenologically and in average 
over the energy (in terms of the specific p-h 
interaction, or a p-h self-energy term). 
 



1.4. Microscopically based transition to the 
PHDOM (as well as to the single-quasiparticle 
DOM) is performed with the use of the many-
body Green function method. Actually, the 
PHDOM is an extension of the standard and non-
standard continuum-RPA (cRPA) versions on 
phenomenological account for the spreading 
effect. The imaginary part of the strength of the 
specific energy-averaged p-h self-energy term 
determines also the corresponding real part via a 
proper dispersive relationship, which follows 
from the spectral expansion for the 2p-2h Green 
function (2p-2h configurations are doorway-
states for the spreading effect). 
 



1.5. The unique feature of the PHDOM is its 
ability to describe: 
(i) the energy-averaged double p-h transition 

density and, therefore, various strength 
functions at arbitrary (but high-enough) 
excitation energies, including giant 
resonances; 

(ii)  direct-nucleon-decay properties of  the  
(p-h)-type states, including the so-called 
direct+semidirect (DSD) reactions 
induced by a s.p. external field;  

(iii) a spreading (dispersive) shift of the 
energy of (p-h)-type resonance structures. 



1.6. Ingredients of the model used in first 
implementations: 

(i) Landau-Migdal p-h interaction and a 
phenomenological partially self-consistent mean 
field; 

(ii) The energy-dependent imaginary part of the 
strength of the energy-averaged p-h self-energy 
term responsible for the spreading effect. 

In conclusion, PHDOM can be considered as the 
model of interacting and damping quasiparticles. 



2. Basic relationships (schematically) 

2.1. PHDOM is finally formulated in terms of energy-
averaged quantities. The main one is the p-h Green function 
(effective p-h propagator) 𝐴𝐴 𝑥𝑥, 𝑥𝑥′,𝜔𝜔 , which satisfy the Beth-
Goldstone-type integral equation: 

𝐴𝐴 𝜔𝜔 = 𝐴𝐴0 𝜔𝜔 + 𝐴𝐴0 𝜔𝜔 𝐹𝐹𝐴𝐴 𝜔𝜔 . 
Here, 𝜔𝜔 is the excitation energy, 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) – p-h interaction 
(in implementations, taken as the Landau-Migdal forces); 
𝐴𝐴0 𝑥𝑥1, 𝑥𝑥2,𝜔𝜔  – “free” p-h propagator, which corresponds to 
the model of non-interacting damping quasiparticles. The 
expression for this key quantity is derived within the discrete 
PHDOM version with the use of a statistical assumption: 
after energy averaging the different p-h configurations are 
“decaying” into chaotic states independently of one another. 

 
 
 



2.2. Let 𝐻𝐻0(𝑥𝑥) be a s.p. Hamiltonian that determines a set of 
s.p. energies 𝜀𝜀𝜆𝜆  and wave functions 𝜑𝜑𝜆𝜆 . Then the 
expression for 𝐴𝐴0 𝑥𝑥, 𝑥𝑥′,𝜔𝜔  derived within the PHDOM 
in terms of 𝜑𝜑𝜆𝜆  (“ 𝜆𝜆 -representation”) is a direct 
extension of the discrete-RPA version: 

𝐴𝐴0 𝑥𝑥, 𝑥𝑥′,𝜔𝜔 = ∑ 𝜑𝜑𝜇𝜇∗ 𝑥𝑥 𝜑𝜑𝜆𝜆 𝑥𝑥 𝜑𝜑𝜆𝜆∗ 𝑥𝑥′ 𝜑𝜑𝜇𝜇 𝑥𝑥′ 𝐴𝐴𝜆𝜆𝜆𝜆 𝜔𝜔𝜆𝜆𝜆𝜆 , 
𝐴𝐴𝜆𝜆𝜆𝜆 = 𝑛𝑛𝜆𝜆−𝑛𝑛𝜇𝜇

𝜀𝜀𝜆𝜆−𝜀𝜀𝜇𝜇−𝜔𝜔+ 𝑛𝑛𝜆𝜆−𝑛𝑛𝜇𝜇 𝑖𝑖𝑖𝑖 𝜔𝜔 −𝑃𝑃 𝜔𝜔 𝑓𝑓𝜆𝜆
 𝑓𝑓𝜇𝜇 

 . 
Here, 𝑛𝑛𝜇𝜇,𝜆𝜆 are the occupation numbers, −𝑖𝑖𝑖𝑖 𝜔𝜔 + 𝑃𝑃 𝜔𝜔  is 
the intensity of the properly parameterized p-h self-energy 
term responsible for the spreading effect, 
𝑓𝑓𝜆𝜆 = ∫𝑓𝑓 𝑥𝑥 𝜑𝜑𝜆𝜆 𝑥𝑥 2𝑑𝑑𝑑𝑑 with 𝑓𝑓 𝑥𝑥  being the Woods-Saxon 
function. The imaginary part of the mentioned intensity, 
𝑊𝑊 𝜔𝜔 , determines the real part via a proper dispersive 
relationship [2,3]. 



2.3. The PHDOM continuum version follows from the 
approximate transformation of the above-given expression  
for 𝐴𝐴0 𝑥𝑥, 𝑥𝑥′,𝜔𝜔  to the form, which contains also the optical-     
model Green functions  𝑔𝑔(𝑥𝑥, 𝑥𝑥′, 𝜀𝜀𝜇𝜇 ± 𝜔𝜔) . The non-
homogeneous equation for these functions contains the 
optical-model-like addition to the mean field: 
−𝑖𝑖𝑖𝑖 𝜔𝜔 + 𝑃𝑃 𝜔𝜔 𝑓𝑓𝜇𝜇𝑓𝑓 𝑥𝑥 . The homogeneous equation for 

the continuum-state w.f’s. 𝜑𝜑𝜀𝜀>0
±  contains the same addition. 

In fact, we have a deal with the effective optical-model 
potential with 𝑊𝑊(𝜔𝜔) being noticeably less than the imaginary 
part used for the description of nucleon-nucleus scattering 
due to a destructive interference of particles and holes 
spreading. 



2.4 The simplest version of the dispersive relationship 

𝑃𝑃 𝜔𝜔 =
2
𝜋𝜋
𝑃𝑃.𝑉𝑉.� 𝑊𝑊(𝜔𝜔′)

𝜔𝜔′
𝜔𝜔2 − 𝜔𝜔′2

+
1
𝜔𝜔′

𝑑𝑑𝑑𝑑
∞

0
 

is adopted to satisfy the condition 𝑃𝑃(𝜔𝜔 → 0) → 0. 
The simplest parametrization of 𝑊𝑊(𝜔𝜔) leads to: 

𝑊𝑊 𝜔𝜔 = 𝛼𝛼𝑊𝑊
𝜔𝜔2

1+𝜔𝜔2/𝐵𝐵2
,𝑃𝑃 𝜔𝜔 = 𝛼𝛼𝑊𝑊

𝜋𝜋
𝜔𝜔2

1+𝜔𝜔2/𝐵𝐵2
ln𝜔𝜔

𝐵𝐵
. 

Here, the intensity parameter 𝛼𝛼𝑊𝑊 and “saturation” parameter 𝐵𝐵 are 
the adjustable parameters (saturation-like energy dependence of 
𝑊𝑊 𝜔𝜔  follows from an analysis of the observable total width of 
various giant resonances).  
 In implementations of the PHDOM we use more 
sophisticated parametrization of 𝑊𝑊 𝜔𝜔 , which contains also an 
adjustable “gap parameter” Δ. (It is supposed, that the spreading 
effect “is started” from a finite excitation energy 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = Δ). The 
dispersive relationship is properly adopted [3]. 



2.5. Expressions for main PHDOM quantities are derived 
starting from the energy-averaged p-h Green function. 
(i) Double transition density and strength function related to a s.p. 

external field (probing operator) 𝑉𝑉0 𝑥𝑥 : 

𝜌𝜌 𝑥𝑥, 𝑥𝑥′,𝜔𝜔 = − 1
𝜋𝜋

Im 𝐴𝐴 𝑥𝑥, 𝑥𝑥′,𝜔𝜔 ;  𝑆𝑆𝑉𝑉0 𝜔𝜔 = − 1
𝜋𝜋

Im(𝑉𝑉0+𝐴𝐴𝐴𝐴0). 

• These quantities can be evaluated at arbitrary (but high-enough 
excitation energy). 

• The energy-averaged double tr. density can’t be factorized (in  other 
words, one-body tr. density can’t be defined). 

• Since existing computer codes for calculation of inelastic hadron-
nucleus scattering accompanied by excitation of a given giant 
resonance (GR) exploits only one-body tr. density, we suggest to use 
the “projected” one-body tr. density  

𝜌𝜌𝑔𝑔 𝑥𝑥,𝜔𝜔 = ∫𝜌𝜌 𝑥𝑥, 𝑥𝑥′,𝜔𝜔 𝑉𝑉0,𝑔𝑔 𝑥𝑥′ 𝑑𝑑𝑥𝑥′ /𝑆𝑆𝑉𝑉0,𝑔𝑔
1/2; 𝑆𝑆𝑉𝑉0,𝑔𝑔

 = |(𝜌𝜌𝑔𝑔 𝜔𝜔 𝑉𝑉0,𝑔𝑔)� 2. 

Here, 𝑉𝑉0,𝑔𝑔 - a specific for excitation of the given GR external field. 



(ii) The effective field 𝑉𝑉(𝑥𝑥,𝜔𝜔), defined by 𝐴𝐴𝑉𝑉0 = 𝐴𝐴0𝑉𝑉 , satisfies the 
equation 

𝑉𝑉 𝜔𝜔 = 𝑉𝑉0 + 𝐴𝐴0 𝜔𝜔 𝐹𝐹𝑉𝑉 𝜔𝜔  

and determines the strength function 𝑆𝑆𝑉𝑉0 𝜔𝜔 = − 1
𝜋𝜋

Im 𝑉𝑉0+𝐴𝐴0𝑉𝑉 . 

(iii) The squared amplitude of the one-nucleon direct+semidirect (DSD) 
reaction induced by an external field 𝑉𝑉0 𝑥𝑥  and accompanied by excitation 
of an one-hole (𝜇𝜇−1) state of the product nucleus is expressed in terms of 
the effective field: 

𝑀𝑀𝑉𝑉0,𝑐𝑐
𝐷𝐷𝐷𝐷𝐷𝐷 𝜔𝜔 2 = 𝑛𝑛𝜇𝜇 𝜓𝜓𝜖𝜖=𝜖𝜖𝜇𝜇+𝜔𝜔

− ∗ 𝑉𝑉 𝜔𝜔 𝜓𝜓𝜇𝜇 𝜓𝜓𝜇𝜇∗𝑉𝑉∗ 𝜔𝜔 𝜓𝜓𝜖𝜖=𝜖𝜖𝜇𝜇+𝜔𝜔
+  

, 

𝑏𝑏𝑐𝑐 𝛿𝛿 = ∫ 𝑀𝑀𝑉𝑉0,𝑐𝑐
𝐷𝐷𝐷𝐷𝐷𝐷 𝜔𝜔 2𝑑𝑑𝑑𝑑 

(𝛿𝛿) ∫ 𝑆𝑆𝑉𝑉0 𝜔𝜔 𝑑𝑑𝑑𝑑 
(𝛿𝛿)� . 

Here, 𝑐𝑐 is a set of the reaction-channel quantum numbers that includes the 
quantum numbers of 𝜇𝜇−1 state and (p-h)-type nuclear excitation; 𝑏𝑏𝑐𝑐 𝛿𝛿  is 
the partial branching ratio for direct one-nucleon decay of the mentioned 
excitation from an energy interval 𝛿𝛿. Within the cRPA, the total branching 
ratio is equal to unity independently of the interval 𝛿𝛿. 



2.4. Weak violations of model unitarity 
caused by the use of: 
(i) an energy dependence of 

−𝑖𝑖𝑖𝑖 𝜔𝜔 + 𝑃𝑃 𝜔𝜔  (takes place for any 
types of high-energy p-h excitations); 

(ii) approximate spectral expansion of optical-
model Green functions 𝑔𝑔 𝑥𝑥, 𝑥𝑥′, 𝜀𝜀  (takes 
place only for isoscalar monopole (ISM) 
excitations); 

can be eliminated [4]. 



(i) The expansion element 𝐴𝐴0,𝜆𝜆𝜆𝜆 𝜔𝜔  of the “free” p-h 
propagator can be represented as the sum of resonant 
(direct) and non-resonant (backward) terms: 

𝐴𝐴0,𝜆𝜆𝜆𝜆 𝜔𝜔 = 𝐴𝐴0,𝜆𝜆𝜆𝜆
𝑟𝑟 𝜔𝜔 + 𝐴𝐴0,𝜆𝜆𝜆𝜆

𝑛𝑛𝑟𝑟 𝜔𝜔  

Within the realistic approximation 𝑑𝑑2𝑊𝑊
𝑑𝑑𝜔𝜔2 ≪ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, unitarity 

can be restored, provided the modified propagator is used: 
𝐴𝐴0,𝜆𝜆𝜆𝜆
𝑚𝑚 𝜔𝜔 =

1 − 𝑓𝑓𝜆𝜆 𝑓𝑓𝜇𝜇 
𝑑𝑑𝑃𝑃 𝜔𝜔
𝑑𝑑𝜔𝜔

𝐴𝐴0,𝜆𝜆𝜆𝜆
𝑟𝑟 𝜔𝜔 + 1 + 𝑓𝑓𝜆𝜆 𝑓𝑓𝜇𝜇 

𝑑𝑑𝑃𝑃 𝜔𝜔
𝑑𝑑𝜔𝜔

𝐴𝐴0,𝜆𝜆𝜆𝜆
𝑛𝑛𝑛𝑛 𝜔𝜔 . 

As a result, the p-h strength 𝑆𝑆𝜆𝜆𝜆𝜆
𝑚𝑚 = − 1

𝜋𝜋 ∫ ImA0,𝜆𝜆𝜆𝜆
𝑚𝑚 𝜔𝜔 𝑑𝑑𝜔𝜔 ≃

1 − 𝑛𝑛𝜆𝜆 𝑛𝑛𝜇𝜇 is restored and, also, A0,𝜆𝜆𝜇𝜇
𝑚𝑚 𝜔𝜔 = A0,𝜇𝜇𝜇𝜇

𝑚𝑚 −𝜔𝜔 . 



(ii) To avoid within the model of ISM “spurious” excitations 
generated by the unit external field, in description of ISM 
strength functions related to the external field 𝑉𝑉0 𝐫𝐫 =
𝑉𝑉0(𝑟𝑟)𝑌𝑌00, the radial part 𝑉𝑉0(𝑟𝑟) should be modified: 

𝑉𝑉0 → 𝑉𝑉0 𝑟𝑟 −< 𝑉𝑉0 >, 
Where averaging is performed on the ground-state matter 
density. 
This modification allows one, in particular, to exclude small 
negative values of ISM strength functions, calculated within 
the PHDOM initial version. 
In description of ISM excitations, both above modifications 
should be used to get an unitary version of the PHDOM. 



3. First implementations of PHDOM 
3.1. Investigations of isoscalar monopole (ISM) excitations allow 
to get info about nuclear matter incompressibility coefficient. 

First, we study within the PHDOM the ISM relative energy-
weighted strength functions 

𝑦𝑦𝑔𝑔 𝜔𝜔 = 𝜔𝜔𝑆𝑆𝑉𝑉0,𝑔𝑔 𝜔𝜔 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑉𝑉0,𝑔𝑔� , 
corresponding to the ISM external fields 𝑉𝑉0,𝑔𝑔 𝑥𝑥  
𝑉𝑉0,1 = 𝑟𝑟2𝑌𝑌00 and 𝑉𝑉0,2 = 𝑟𝑟2 𝑟𝑟2 − 𝜂𝜂 𝑌𝑌00 
(η is an adjustable parameter), which lead to excitation of the 
isoscalar monopole giant resonance (ISGMR) and its overtone 
(ISGMR2) [4,5]. 
The strength functions calculated within the PHDOM versions for 
208Pb are shown in the Figs. 1,2. 



Fig. 1.  The relative energy-weighted strength functions calculated for the ISGMR 
in 208Pb within the initial (thick line) and unitary (dotted line) versions of the 
PHDOM. 



Fig. 2. Same as in Fig. 1 but for the ISGMR2. 



To deduce the ISM strength distribution from the 
inelastic 𝛼𝛼,𝛼𝛼′ -scattering cross sections at small 
angles, it is necessary to know the ISM energy-
averaged (two-dimensional) double transition density: 

𝜌𝜌 𝑟𝑟, 𝑟𝑟′,𝜔𝜔 = 4𝜋𝜋 𝑟𝑟𝑟𝑟′ 2𝜌𝜌 𝐫𝐫, 𝐫𝐫′,𝜔𝜔  
at arbitrary energies.  
In Fig.3 we show evaluated for 𝑃𝑃𝑃𝑃 

208  the “diagonal” 
quantity 𝜌𝜌 𝑟𝑟, 𝑟𝑟,𝜔𝜔  (the solid thick line) in a 
comparison with the squared projected and properly 
normalized semi-classical collective-model one-body 
transition densities, 𝜌𝜌1

𝑝𝑝𝑝𝑝 𝑟𝑟,𝜔𝜔  and 𝜌𝜌1𝑐𝑐𝑐𝑐 𝑟𝑟,𝜔𝜔  (the solid 
thin and dashed lines, respectively) in a vicinity of the 
ISGMR [5]. Differences at ISGMR “tails” are clearly 
seen (existing computational codes “accept” only one-
body transitional density). 



Fig. 3. The ISM double transition density calculated at different excitation 
energies in the vicinity of ISGMR: 10.8 MeV (a), 13.8 MeV (b), 16.8 MeV (c) 



• The partial branching ratios for direct neutron decay of the ISGMR in 
𝑃𝑃𝑃𝑃 

208  calculated within the PHDOM initial and unitary versions (𝑏𝑏𝜇𝜇𝑖𝑖  
and 𝑏𝑏𝜇𝜇𝑢𝑢 respectively) for the excitation energy interval 𝛿𝛿 = 12.5 ÷
15.5 MeV in a comparison with the corresponding experimental data 
[4] are shown in Table 1. 

• In calculations, the pure single-hole structure of 𝜇𝜇−1 states of 𝑃𝑃𝑃𝑃 
207  is 

supposed. 
 
Table 1 

µ−1 𝑏𝑏𝜇𝜇
𝑖𝑖 , % 𝑏𝑏µ

𝑢𝑢 , % 𝑏𝑏𝜇𝜇
𝑒𝑒𝑒𝑒𝑒𝑒 , % 

3p1/2 1.65 2.85 % 0.75 ± 1.1 

1i13/2 0.36 0.39 2.9 ±1.3 

2f5/2 11.6 11.7 2.6 ± 1.7 

3p3/2 2.90 3.18 5.3 ± 1.8 

2f7/2 9.76 10.5 11.4 ± 1.3 

Incl. (2d5/2 )( 1g7/2)  0.0 0.0 



3.2. Simplest photonuclear reactions [6]. 
The isovector giant dipole and quadrupole resonances (IVGDR and IVGQR)  are  
systematically  studied  by  means  of photonuclear reactions. The simplest 
reactions are photoabsorption and DSD photoneutron and inverse reactions.  

To describe these reactions within the PHDOM we use the corresponding external 
fields as follows (𝑄𝑄𝐿𝐿𝐿𝐿 = 𝑟𝑟𝐿𝐿𝑌𝑌𝐿𝐿𝐿𝐿): 

 IVGDR→ 𝑉𝑉0 𝑥𝑥 = −1
2
𝜏𝜏 3 𝑄𝑄1𝑀𝑀; ISGQR+IVGQR →  1

2
1 − 𝜏𝜏 3 𝑄𝑄2𝑀𝑀.  

Within the accuracy 1 ≪ 𝑁𝑁 − 𝑍𝑍 ≪ 𝐴𝐴, the equations for isovector (𝑇𝑇 = 1) and  
isoscalar (𝑇𝑇 = 0) effective  fields are decoupled. These fields 𝑉𝑉𝐿𝐿𝐿𝐿𝑇𝑇=1 𝑉𝑉0,𝐿𝐿𝐿𝐿

𝑇𝑇=1 = 𝑄𝑄𝐿𝐿𝐿𝐿  
and 𝑉𝑉2𝑀𝑀𝑇𝑇=0 𝑉𝑉0,2𝑀𝑀

𝑇𝑇=0 = 𝑄𝑄2𝑀𝑀  determine, in particular, the neutron effective fields: 

𝑉𝑉1𝑀𝑀
𝑛𝑛 = −1

2
𝑉𝑉1𝑀𝑀𝑇𝑇=1; 𝑉𝑉2𝑀𝑀

𝑛𝑛 = 1
2
𝑉𝑉2𝑀𝑀𝑇𝑇=0 − 𝑉𝑉2𝑀𝑀𝑇𝑇=1 .  

The latters determine the amplitudes of the DSD photoneutron and inverse 
reactions. The excitation of the IVGQR (and ISGQR) in these reactions is possible 
only due to a p-h interaction. 



Photoabsorption cross section 
𝜎𝜎𝑎𝑎,𝐸𝐸𝐸 𝜔𝜔  (𝜎𝜎𝑎𝑎,𝐸𝐸𝐸 + 𝜎𝜎𝑎𝑎,𝐸𝐸𝐸) 

The adjustable parameters obtained to describe 𝜎𝜎𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 𝜔𝜔  (Table 2) 

 
 
 208Pb 
𝛿𝛿 = 7.5 − 37.5 MeV 
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3633 mbMeV 
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 = 3583 mbMeV 

A consistency of the model 
 

Nucleus 89Y 140Ce 208Pb 
α, MeV-1 0.125 0.10 0.08 

𝑘𝑘1′  0.15 0.13 0.17 
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Fig. 4. 



DSD neutron radiative capture 
No free parameters! 

Fig. 5. 



Partial DSD 208Pb(γ,n) reaction cross sections 
(predictions). 
 
Partial branching ratios for IVGDR direct 
neutron decay 
         Table 3 

 
 

btot = 12.55% 
 

µ 3p1/2 2f5/2 3p3/2 1i13/2 1h9/2 1f7/2 

bµ 1.79 3.61 3.10 1.37 2.15 0.53 



Fig. 6. 



IVGDR+IVGQR 
The asymmetry of the DSD partial differential (γ,n) 
and inverse reaction cross sections is linear on the E2-
reaction amplitude and, therefore, is the appropriate 
subject for study of the IVGQR in photonuclear 
reactions. 

𝛼𝛼𝜇𝜇 =
𝑑𝑑𝜎𝜎𝜇𝜇

− (𝜔𝜔,𝜃𝜃1)

𝑑𝑑𝜎𝜎𝜇𝜇
+ (𝜔𝜔,𝜃𝜃1)

; 

𝑑𝑑𝜎𝜎𝜇𝜇
∓ (𝜔𝜔,𝜃𝜃1)
𝑑𝑑Ω

=
𝑑𝑑𝜎𝜎𝜇𝜇 𝜔𝜔,𝜃𝜃1

𝑑𝑑Ω
∓
𝑑𝑑𝜎𝜎𝜇𝜇 𝜔𝜔,𝜋𝜋 − 𝜃𝜃1

𝑑𝑑Ω
; 

𝜃𝜃1 = 55∘ 
The adjustable “velocity” parameter 𝑘𝑘2′ = 0.1 



Fig. 7. 



Fig. 8. 



Fig. 9. 



3.3. IAR spreading width – the challenge for nuclear 
theory 

• A small value (several tens keV) of the spreading width of the Isobaric 
Analog Resonances (IARs), Γ𝐴𝐴↓, is the impressive manifestation of the 
approximate isospin-symmetry conservation in medium-heavy mass 
nuclei. For the IARs, the spreading effect is strongly suppressed and 
realized only due to isospin mixing. In mentioned nuclei, the mean 
mixing mechanism consists in IAR coupling to its overtone (IVGMR(-

)) via a variable part 𝑉𝑉𝐶𝐶(𝑟𝑟) of the mean Coulomb field 𝑈𝑈𝐶𝐶(𝑟𝑟). 
• To get a quantitative estimation of Γ𝐴𝐴↓ , we use the “Coulomb 

description” of IAR properties [7], which allows, in particular, to 
express the IAR total width Γ𝐴𝐴  in terms of the energy-averaged 
strength function related to the external field 
𝑉𝑉𝐶𝐶

(−) = 𝑈𝑈𝐶𝐶 𝑟𝑟 − 𝜔𝜔𝐴𝐴 + 𝑖𝑖
2
Γ𝐴𝐴 𝜏𝜏(−): 

Γ𝐴𝐴 =
2𝜋𝜋
𝑆𝑆𝐴𝐴
𝑆𝑆𝑉𝑉𝐶𝐶−

𝜔𝜔 = 𝜔𝜔𝐴𝐴  



Here, 𝑆𝑆𝐴𝐴 ≤ 𝑁𝑁 − 𝑍𝑍 is the IAR Fermi strength, 𝜔𝜔𝐴𝐴 is the IAR 
excitation energy counted off the parent-nucleus ground-state 
energy. 
Since the IAR is located at the distant “tail” of the IVGMR(-), 
the PHDOM is quite appropriate for evaluation of the 
Coulomb strength function and also the squared Coulomb 
DSD-reaction amplitudes. The latter determine the IAR 
partial and total proton escape widths: 

Γ𝐴𝐴↑ = ∑ Γ𝐴𝐴,𝜈𝜈
↑

𝜈𝜈 = 2𝜋𝜋
𝑆𝑆𝐴𝐴
∑ 𝑀𝑀

𝑉𝑉𝐶𝐶
− ,𝜈𝜈

𝐷𝐷𝐷𝐷𝐷𝐷 𝜔𝜔 = 𝜔𝜔𝐴𝐴
2

𝜈𝜈  . 

Then, the IAR spreading width can be found as Γ𝐴𝐴↓ = Γ𝐴𝐴 − Γ𝐴𝐴↑. 
 



Only one specific phenomenological parameter, 𝛼𝛼𝑊𝑊, determines within 
the model the Γ𝐴𝐴↓  value. (Other model parameters are found from 
independent data). We adjust 𝛼𝛼𝑊𝑊 to describe the observable total width of 
the IVGMR(-). 
In Fig. 10 we show the Coulomb strength function calculated for the 

𝑃𝑃𝑃𝑃 
208  parent nucleus in a wide energy interval that includes the IVGMR(-

). As expected, no any resonance structure has been found at the IAR 
energy 𝜔𝜔𝐴𝐴. 
The preliminary results allows us to hope that the old theoretical problem 
– quantitative estimation of the IAR spreading width – might be solved 
within the PHDOM. 

              Table 4 
Nucleus Γ𝐴𝐴

↓,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝑴𝑴𝑴𝑴𝑴𝑴 Γ𝐴𝐴
↓,𝒆𝒆𝒆𝒆𝒆𝒆,𝑴𝑴𝑴𝑴𝑴𝑴 

𝑃𝑃𝑃𝑃 
208  80 78 ± 8 

𝑃𝑃𝑃𝑃 
209  87 75 ± 7 



Fig. 10. The Coulomb strength functions calculated within the 
PHDOM (bold line) and cRPA(thin line) for the 208Pb parent nucleus. 



III. An unitary version of the single-quasiparticle 
dispersive optical model (SQDOM) 

1. Introductory words 
 
• Being the oldest nuclear model, the OM was first 

formulated to describe nucleon-nucleus scattering in 
terms of a phenomenological energy-dependent 
complex-valued potential. Up to now this model is 
widely used by experimentalists. 

• An OM dispersive version has been proposed in an 
attempt to understand structure of the mentioned 
potential [8]. 

• In applying to description of damping of deep-hole 
states we suggest an unitary version of the SQDOM [9] 



2. Basic relationships of the SQDOM 
• The microscopacally-based transition to an OM is 

performed by energy averaging the Dyson equation for the 
single-quasiparticle Green function (GF). The free term in 
this equation describes “potential” motion, while the 
energy-averaged mass operator is responsible for the 
spreading effect and can be properly parameterized with 
taking analytical properties of this operator into account. 

• The observable energies of deep-hole states can be finally 
described supposing the existence of an energy-dependent 
part of the nuclear mean field: Δ𝑝𝑝 𝑟𝑟, 𝜀𝜀 = Δ𝑝𝑝 𝜀𝜀 𝑓𝑓(𝑟𝑟) 
(below we consider this part as an addition to the mean 
field used in implementations of the PHDOM). 



 Let ℎ𝑗𝑗𝑗𝑗 𝑟𝑟, 𝜀𝜀 = ℎ𝑗𝑗𝑗𝑗 𝑟𝑟 + Δ𝑝𝑝(𝑟𝑟, 𝜀𝜀)  be the radial part of the s-p 
Hamiltonian. Then the Green function of the corresponding Schrödinger 
equation (“potential” GF), satisfying the equation 

ℎ𝑗𝑗𝑗𝑗 𝑟𝑟, 𝜀𝜀 − 𝜀𝜀 𝑔𝑔𝑗𝑗𝑗𝑗
𝑝𝑝 (𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) = −𝛿𝛿 𝑟𝑟 − 𝑟𝑟′ , 

has non-unit residues 𝑆𝑆𝜆𝜆
𝑝𝑝 at their poles (spectroscopic factors) related to 

bound states 𝜆𝜆: 

𝑔𝑔𝑗𝑗𝑗𝑗
𝑝𝑝 𝑟𝑟, 𝑟𝑟′, 𝜀𝜀 → 𝜀𝜀𝜆𝜆 = 𝑔𝑔𝜆𝜆

𝑝𝑝 𝜀𝜀 𝜒𝜒𝜆𝜆 𝑟𝑟 𝜒𝜒𝜆𝜆 𝑟𝑟′ ; 𝑔𝑔𝜆𝜆
𝑝𝑝 𝜀𝜀 =

𝑆𝑆𝜆𝜆
𝑝𝑝

𝜀𝜀−𝜀𝜀𝜆𝜆
; 

𝑆𝑆𝜆𝜆
𝑝𝑝 = 1/𝑞𝑞𝜆𝜆𝜆𝜆

𝑝𝑝 (𝜀𝜀 = 𝜀𝜀𝜆𝜆); 𝑞𝑞𝑝𝑝 𝑟𝑟, 𝜀𝜀 = 1 − 𝑑𝑑Δ𝑝𝑝 𝜀𝜀
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑟𝑟). 

This unitarity violation can be eliminated by the use of the modified 
“potential” GF 

𝑔𝑔𝑗𝑗𝑗𝑗
𝑝𝑝,𝑚𝑚(𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) = 𝑞𝑞 

𝑝𝑝 𝑟𝑟, 𝜀𝜀 1/2𝑔𝑔𝑗𝑗𝑗𝑗
𝑝𝑝 (𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) 𝑞𝑞 

𝑝𝑝 𝑟𝑟′, 𝜀𝜀 1/2
, 

whose pole representation leads to the unit spectroscopic factors 𝑆𝑆𝜆𝜆
𝑝𝑝,𝑚𝑚 ≃ 1. 



• The first step in formulation of the SQDOM is the use of the modified 
“potential” GF as the free term in the energy averaged Dyson equation 
(𝜀𝜀 < 𝜇𝜇, 𝜇𝜇 is the chemical potential): 

𝑔𝑔𝑗𝑗𝑗𝑗 (𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) =
𝑔𝑔𝑗𝑗𝑗𝑗
𝑝𝑝,𝑚𝑚 𝑟𝑟, 𝑟𝑟′, 𝜀𝜀 + ∫𝑔𝑔𝑗𝑗𝑗𝑗

𝑝𝑝,𝑚𝑚 𝑟𝑟, 𝑟𝑟1, 𝜀𝜀 𝑖𝑖𝑖𝑖 𝑟𝑟1, 𝜀𝜀 + Δ𝑑𝑑 𝑟𝑟1, 𝜀𝜀 𝑔𝑔𝑗𝑗𝑗𝑗 𝑟𝑟1, 𝑟𝑟′, 𝜀𝜀 𝑑𝑑𝑟𝑟1. 

Here, 𝑊𝑊 𝑟𝑟, 𝜀𝜀 = 𝑊𝑊 𝜀𝜀 𝑓𝑓(𝑟𝑟) and Δ𝑑𝑑 𝑟𝑟, 𝜀𝜀 = Δ𝑑𝑑 𝜀𝜀 𝑓𝑓(𝑟𝑟) are, respectively, 
the imaginary and the real parts of the strength of the properly 
parameterized energy-averaged mass operator. 
 
• The simplest version of the dispersive relationship (the latter follows 

from the spectral expansion for the 3-quasiparticle GF) is the following 
(𝐸𝐸 = 𝜀𝜀 − 𝜇𝜇): 

Δ𝑑𝑑 𝜀𝜀 = 2𝐸𝐸
𝜋𝜋

 𝑃𝑃.𝑉𝑉.∫ 𝑊𝑊 𝐸𝐸′

𝐸𝐸2−𝐸𝐸′2
𝑑𝑑𝑑𝑑𝑑∞

0 . 



• The basic integral equation can be transformed into the differential 
equation for an auxiliary GF: 

 

𝑔𝑔𝑗𝑗𝑗𝑗(𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) = 𝑞𝑞𝑝𝑝 𝑟𝑟, 𝜀𝜀 1/2𝑔𝑔𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) 𝑞𝑞𝑝𝑝 𝑟𝑟′, 𝜀𝜀 1/2
, 

ℎ𝑗𝑗𝑗𝑗 𝑟𝑟, 𝜀𝜀 + Δ𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟, 𝜀𝜀 + 𝑖𝑖𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟, 𝜀𝜀 − 𝜀𝜀 𝑔𝑔𝑗𝑗𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) = −𝛿𝛿 𝑟𝑟 − 𝑟𝑟′ , 
where Δ𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟, 𝜀𝜀 = Δ𝑝𝑝 𝑟𝑟, 𝜀𝜀 + Δ𝑑𝑑 𝑟𝑟, 𝜀𝜀  𝑞𝑞𝑝𝑝 𝑟𝑟, 𝜀𝜀  and 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟, 𝜀𝜀 =
𝑊𝑊 𝑟𝑟, 𝜀𝜀 𝑞𝑞𝑝𝑝 𝑟𝑟, 𝜀𝜀 . 
Thus, the quantities 𝑊𝑊 𝑟𝑟, 𝜀𝜀  and Δ𝑑𝑑 𝑟𝑟, 𝜀𝜀  are renormalized due to unitarity 
restoration on “potential” level. 
• Since the observable single-hole resonance structures are non 

overlapped (i.e., the 𝑊𝑊 value is not too large), the above-given 
equation can be solved in the pole approximation. As a result, the 
single-hole strength function 

𝑆𝑆𝜆𝜆 𝜀𝜀 = −
1
𝜋𝜋

Im�𝑔𝑔𝑗𝑗𝑗𝑗 𝑟𝑟, 𝑟𝑟′, 𝜀𝜀 → 𝜀𝜀𝜆𝜆 𝑑𝑑𝑑𝑑 

can be found. 



• In some simplifying (but realistic) approximations the 
strength function can be described by a Lorentzian, whose 
width Γ𝜆𝜆 and integral strength 𝑆𝑆𝜆𝜆 are: 

Γ𝜆𝜆 = 2𝑊𝑊𝜆𝜆𝜆𝜆 𝜀𝜀𝜆𝜆 𝑆𝑆𝜆𝜆, 𝑆𝑆𝜆𝜆 = 𝑞𝑞𝑑𝑑 𝜀𝜀𝜆𝜆 𝜆𝜆𝜆𝜆
−1

,  

𝑞𝑞𝑑𝑑 𝑟𝑟, 𝜀𝜀 = 1 − 𝑑𝑑Δ𝑑𝑑 𝜀𝜀
𝑑𝑑𝑑𝑑

𝑓𝑓(𝑟𝑟). 

One can see that one more violation of model unitarity is due 
to an energy dependence of the real (dispersive) part of 
energy-averaged mass operator. 
• This violation can be eliminated by the use of the modified 

optical-model GF 

𝑔𝑔𝑗𝑗𝑗𝑗𝑚𝑚(𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) = 𝑞𝑞 
𝑑𝑑 𝑟𝑟, 𝜀𝜀

1/2
𝑔𝑔𝑗𝑗𝑗𝑗 (𝑟𝑟, 𝑟𝑟𝑟, 𝜀𝜀) 𝑞𝑞 

𝑑𝑑 𝑟𝑟′, 𝜀𝜀
1/2

. 

In this case the modified single-hole strength 𝑆𝑆𝜆𝜆
𝑚𝑚 is close to 

unity, but the width Γ𝜆𝜆
𝑚𝑚 = Γ𝜆𝜆 is not changed. 



3 First implementations 

• Detailed info concerned with two sets of exp. data 𝜀𝜀𝜆𝜆  and Γ𝜆𝜆  is 
available for neutron and proton one-hole states in the 𝑍𝑍𝑍𝑍90  and 𝑃𝑃𝑃𝑃208  
parent nuclei. 

• These data together with the dispersive relationship are used to deduce 
within the model the quantities 𝑊𝑊 𝜀𝜀 ,Δ𝑝𝑝 𝜀𝜀 ,Δ𝑑𝑑(𝜀𝜀) and to establish the 
contribution of the dispersive part in the full energy-dependent OM 
potential: 

Δ𝑒𝑒𝑒𝑒𝑒𝑒 = Δ𝑝𝑝 + Δ𝑑𝑑 1 − 𝑑𝑑Δ𝑝𝑝

𝑑𝑑𝑑𝑑
. 

An example is given in Fig.11. Within the unitary version of the model 
this contribution is suppressed. 
• Properties of deep-hole states in the 𝑆𝑆𝑆𝑆 

132  parent nucleus have been 
predicted. 

• The continuum version of the SQDOM is under consideration. 



Fig. 11. The thick solid, thin solid, and dash-dotted curves represents 
calculated functions 𝑊𝑊, 𝑞𝑞𝑝𝑝Δ𝑑𝑑  and Δ𝑒𝑒𝑒𝑒𝑒𝑒  respectively for the neutron 
subsystem of the 90Zr parent nucleus. 



IV. Conclusive remarks 
• We proposed the new semimicroscopic model (PHDOM), that takes 

commonly into account the main relaxation modes of high-energy (p-
h)-type nuclear excitations in medium-heavy mass “hard” spherical 
nuclei. 

• The unique feature of the model is its ability to describe the energy-
averaged double transition density (and, therefore, strength functions) 
at arbitrary (but high enough) excitation energies, and also direct-
nucleon-decay properties of mentioned excitations. 

• Considering the 𝑃𝑃𝑃𝑃 
208  parent nucleus as an example, we apply a 

simple version of the model to the description of isoscalar monopole 
excitations, simplest photo-nuclear reactions, the spreading width of 
the IAR. 

• In applying to the description of deep-hole states, we propose an 
unitary version of the single-quasiparticle dispersive optical model. 
This version is realized for the 𝑍𝑍𝑍𝑍90  and 𝑃𝑃𝑃𝑃208  parent nuclei. 
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