

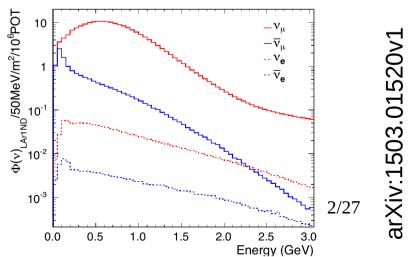
The <u>Short</u> <u>Baseline</u> <u>Near</u> <u>Detector</u> at Fermilab

Thomas Mettler for the SBND Collaboration University of Bern

6th International Conference on New Frontiers in Physics (ICNFP2017)

17. - 29 August 2017

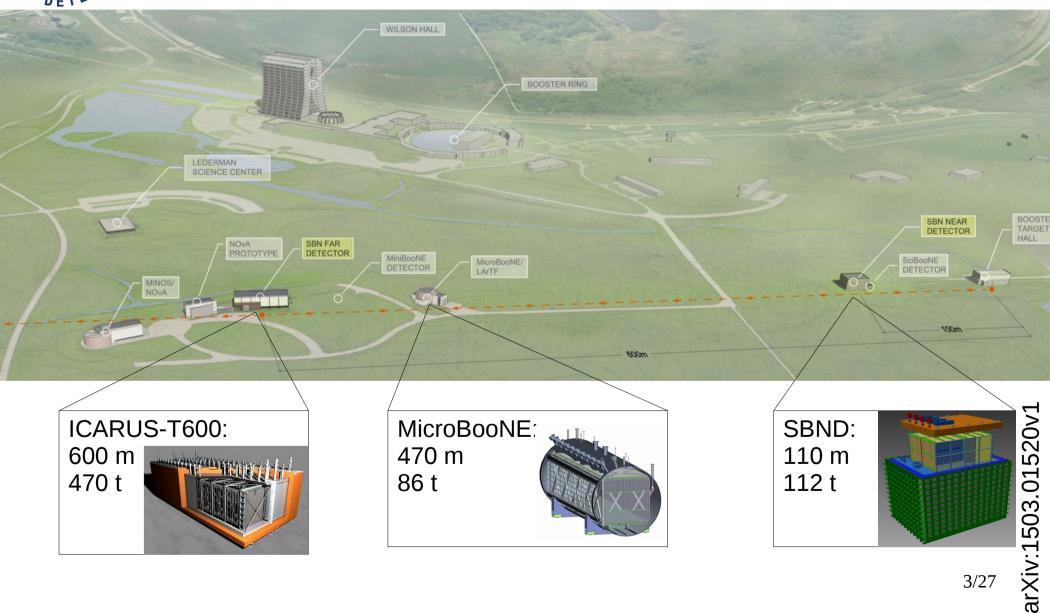
UNIVERSITÄT BERN


SBN Program

b UNIVERSITÄT BERN

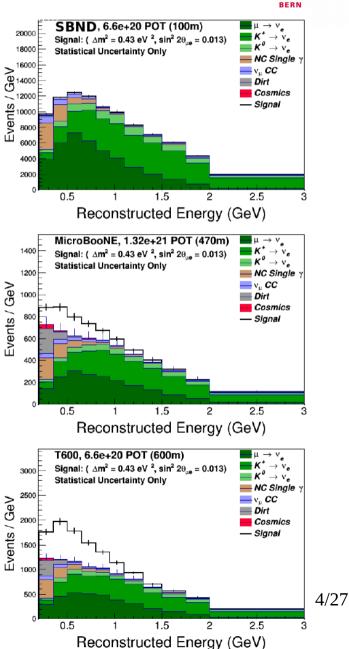
b

- Short Baseline Neutrino program (SBN)
- 3 liquid Argon Time-Protection Chambers (LArTPCs): SBND, MicroBooNE, ICARUS T-600
- Booster Neutrino Beam (BNB):
 - 8 GeV protons
 - $\langle E_v \rangle \approx 700 \text{ MeV}$



SBN Detectors

UNIVERSITÄT BERN


 $u^{\scriptscriptstyle b}$

SBN Physics program

- Sterile Neutrino driven by LSND/MiniBooNE
 - Separation of e/γ
- Neutrino cross section in Argon
- LArTPC R&D

b

UNIVERSITÄT

Physics Goals of SBND

b UNIVERSITÄT

- Measure the unoscillated flux of Neutrinos from BNB:
 - Measuring the interactions of ν_{μ} -CC, ν_{e} -CC and NC, characterize the BNB for oscillation searches with MicroBooNE and ICARUS.
- Study neutrino-nucleus interactions in Argon
 - SBND will collect a huge data set, allowing for precise cross section measurement & study of rare interactions.
- Additional searches:
 - supernova neutrinos, dark matter etc...

Event Rates

Process

UNIVERSITÄT BERN

Stat.

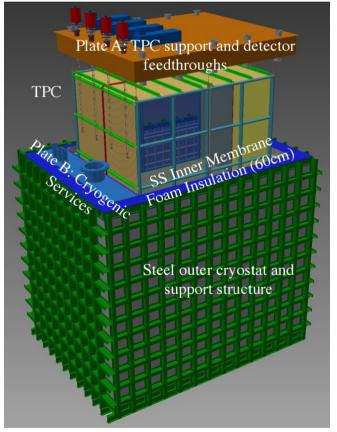
Events/

No.

Interactions for
 6.6 * 10²⁰ POT

- 3 years of data taking
- ν_µ-Ar interactions: 7*10⁶
- v_e -Ar interactions: 5*10⁴

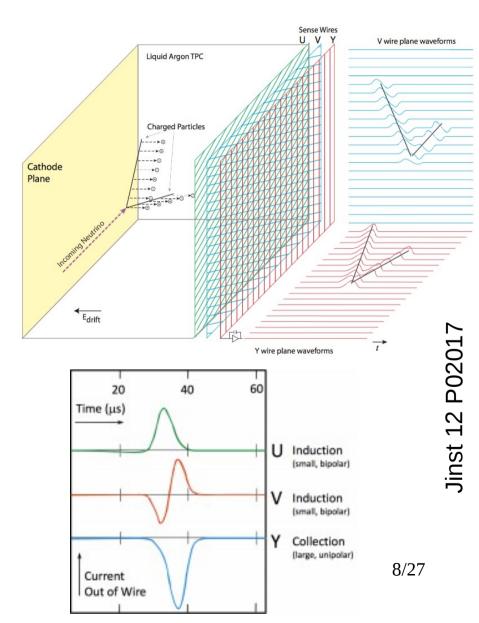
Frocess		INO.	Events/	Stat.
		Events	ton	Uncert.
2	ν_{μ} Events (By Final State Topology			
CC Inclusive		5,212,690	$46,\!542$	0.04%
CC 0 π	$ u_{\mu}N ightarrow \mu + Np$	$3,\!551,\!830$	31,713	0.05%
	$\cdot \ \nu_{\mu}N \rightarrow \mu + 0p$	$793,\!153$	7,082	0.11%
	$\cdot \ \nu_{\mu}N \rightarrow \mu + 1p$	$2,\!027,\!830$	$18,\!106$	0.07%
	$\cdot \ \nu_{\mu}N \rightarrow \mu + 2p$	$359,\!496$	3,210	0.17%
	$\cdot \ \nu_{\mu}N \to \mu + \geq 3p$	$371,\!347$	3,316	0.16%
CC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	1,161,610	$10,\!372$	0.09%
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \to \mu + \text{nucleons} + \ge 2\pi^{\pm}$	$97,\!929$	874	0.32%
$CC \ge 1\pi^0$	$ \nu_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 1\pi^0 $	497,963	$4,\!446$	0.14%
NC Inclusive		1,988,110	17,751	0.07%
NC 0 π	$ u_{\mu}N \rightarrow \text{nucleons}$	$1,\!371,\!070$	$12,\!242$	0.09%
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924	2,330	0.20%
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	$31,\!940$	285	0.56%
$NC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 1\pi^0$	358,443	3,200	0.17%
	$\nu_e \ Events$			
CC Inclusive		36798	329	0.52%
NC Inclusive		14351	128	0.83%
Total ν_{μ} and ν_{e} Event	s	$7,\!251,\!948$	64,750	



SBND Detector

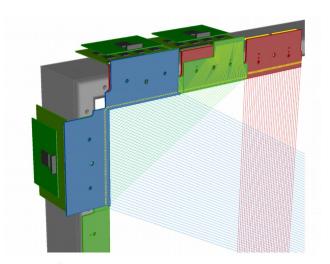
b

- 110 m from target
- LArTPC with 112 t of LAr
- 4 m * 4 m * 5 m active volume
- 3 wire planes on both sides
- 2 m drift distance
- Cold electronics
 - Preamplification, digitisation
- UV laser-based calibration system
- Cosmic Ray Tagger system

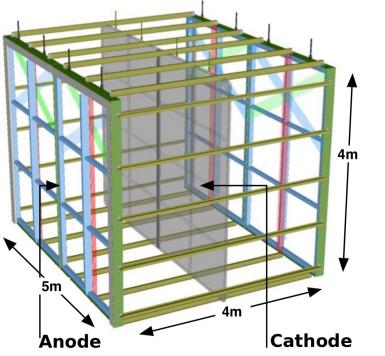


Working Principle of TPC

- Charged particles ionize the LAr and produce scintillation light
- Photo sensors detect scintillation light and trigger an event
- Electrons drift to anode due to HV
- Read out of the electron charge with 3 wire planes + drift time → 3D image of interaction



Time Projection Chamber

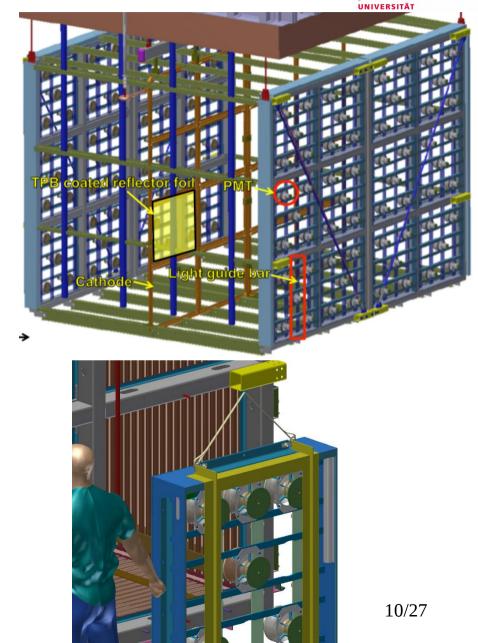


- Each 5632 channels, 11264 total
- 2 m drift distance
- Voltage: -100 kV \rightarrow 500 V/cm
- 1.28 ms drift time
- Cold electronics
 - Preamplification
 - Digitisation

 $\boldsymbol{u}^{\scriptscriptstyle b}$

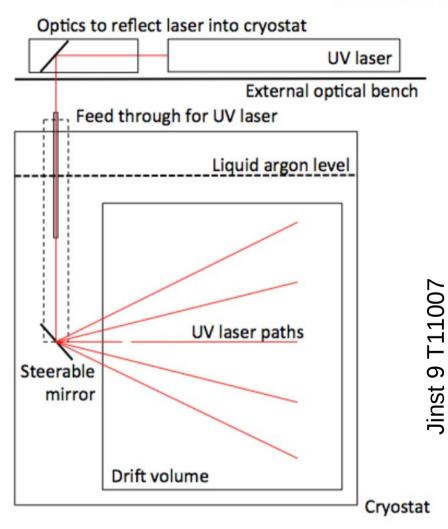
UNIVERSITÄT

arXiv:1503.01520v1


9/27

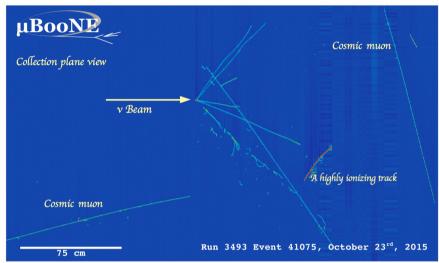
Light Readout

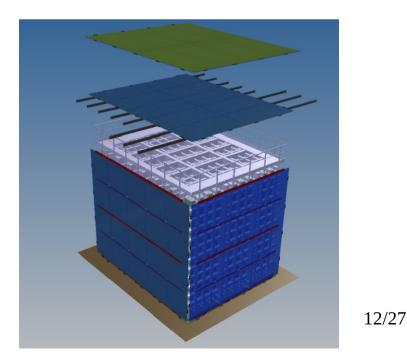
- PMT + Light Guide Bars
- The PMTs are TPB coated
- Providing trigger and time information
 - \rightarrow measure the drift time
 - → position in the third dimension



UV-Laser Calibration System

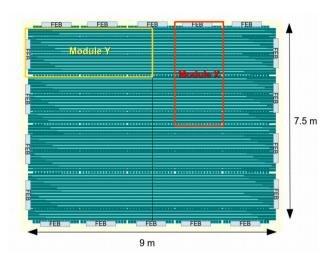
UNIVERSITÄT RERN

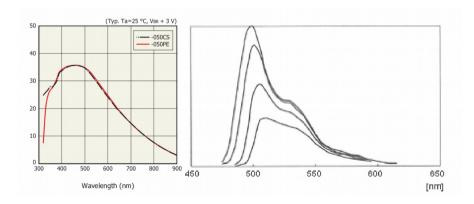

- Positive ions due to ionisation
 - \rightarrow Distortion of the E-field
- Four steerable UV-laser systems generate straight tracks
- Maps the electric field distorted by the space charge effect
 - Provides frequent calibration of the Efield
- Correct track distortion
- Wavelength: 266 nm
- PPS: 10 Hz

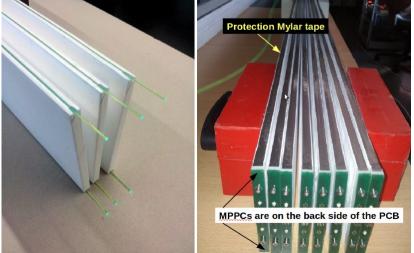


Cosmic Ray Tagger

- High rate of cosmic interaction since the detector is on the surface
- Reject cosmic interactions (mainly muons)
- Every neutrino event is surrounded by 3 muon tracks per read out time window on average
- Two top layer telescope with ≈ 8 mrad




UNIVERSITÄT RERN



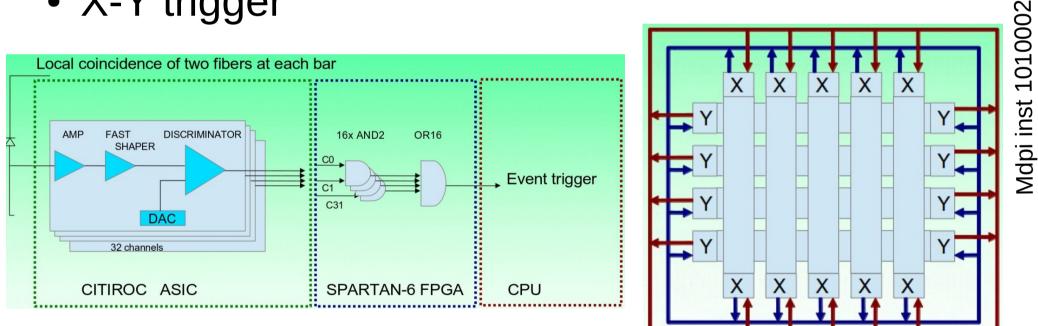
Cosmic Ray Tagger

- Planes out of X- and Y-modules
- 16 strips of plastic scintillator in each module
- 2 WLS fibers and 2 SiPM per strip
- 1 Front-End electronic board per module

Mdpi inst 1010002

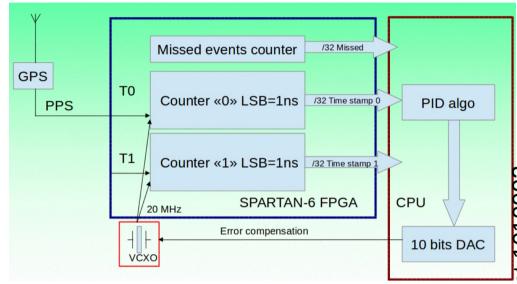
UNIVERSITÄT RERN

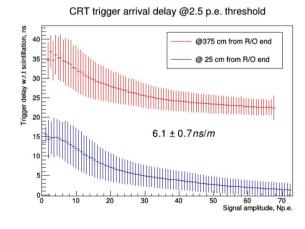
Jinst 11 P10005


13/27

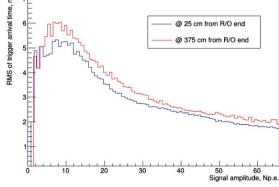
Cosmic Ray Tagger

- Both SiPMs have to reach threshold to trigger an event
- X-Y trigger




Cosmic Ray Tagger

 u^{\flat}


UNIVERSITÄT BERN

- Time stamp with global time reference
- Time stamp with beam time reference
- Spatial resolution of 1.8 cm
- Time resolution about 2 ns

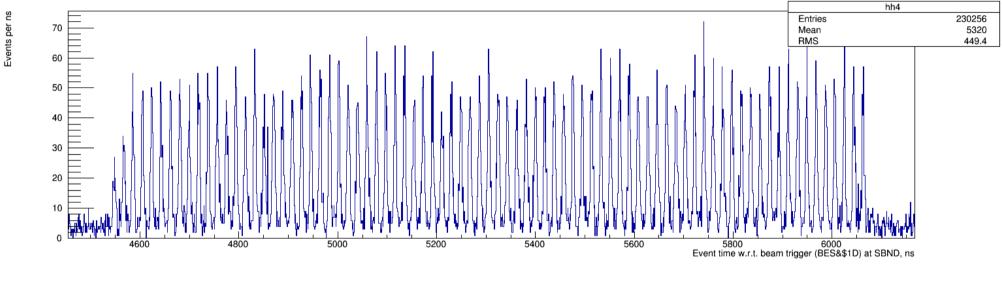
CRT global timing resolution @2.5 p.e. threshold

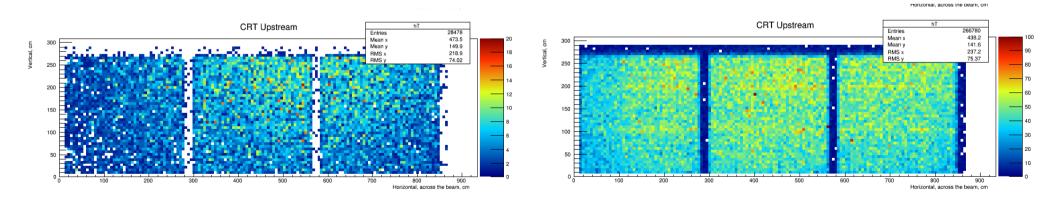
CRT Test Stand

- Installed end of June 2017
- Measuring "dirt" muons of the BNB beam + cosmic rays
- Beam profiling
- Resolving beam structure
- 18 modules up stream
- 6 modules down stream
- 946 cm between up and down stream modules
- Up stream: 2.7 m * 2.7 m * 3
 = 21.9m²
- Down stream: 2.7 m * 2.7 m * 1

= 7.3m²

UNIVERSITÄT





b UNIVERSITÄT BERN

 u^{\flat}

SBND CRT events in time

BNB events

Cosmic rays

- Detector Hall construction : complete
- CRT installation: started June 2017
- Cryostat installation: summer 2018
- TPC production: on going
- Detector commissioning: 2019

UNIVERSITÄT BERN

The detector building of SBND.

- Detector Hall construction : complete
- CRT installation: started June 2017
- Cryostat installation: summer 2018
- TPC production: on going
- Detector commissioning: 2019

View in the pit for the SBND detector. The installed CRT modules downstream are visible.

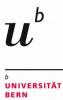
b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

- Detector Hall construction : complete
- CRT installation: started June 2017
- Cryostat installation: summer 2018
- TPC production: on going
- Detector commissioning: 2019

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN


The cryostat is designed by CERN. The experience from currently running prototypes is taken into account.

- Detector Hall construction : complete
- CRT installation: started June 2017
- Cryostat installation: summer 2018
- TPC production: on going
- Detector commissioning: 2019

The APA frame with first wires.

APA frame being surveyed

- Detector Hall construction : complete
- CRT installation: started June 2017
- Cryostat installation: summer 2018
- TPC production: on going
- Detector commissioning: 2019

Summary

- SBND will characterize the BNB flux for the neutrino oscillation studies of MicroBooNE and ICARUS
- SBND will provide a huge data set of neutrino-Ar interactions, constraining cross section uncertainties
- Development of the LArTPC technology for future neutrino experiments
- The detector is being constructed
- CRT test stand already installed and running