

CMS Overview Physics Highlights

Małgorzata Kazana on behalf of the CMS Collaboration

National Centre for Nuclear Research NCBJ – Warsaw, Poland

6th International Conference on New Frontiers in Physics 17 - 26 Aug 2017 Kolymbari, Crete, Greece

Compace Muon Solenoid experiment at the CERN's LH

Outline

LHC short intro

CMS Detector status

- Subdetector upgrades for data-taking in 2017
 - New: Pixel detector, L1 Trigger, HF calorimeter readout
 - 2017 Performance

CMS Physics highlights with full 2016 36/fb 13 TeV data

- 79 new results in 2017 realised at:
 - Moriond'17 39 publications
 - LHCP'17 22
 - EPS-HEP'17 20
- In this talk only selected fresh proton-proton results
 - during this conference other 22 presentations and 4 posters

SUISSI

RANC

CMS

Introduction

Large Hadron Collider at CERN

ALICE

ATLAS

LHC 27 km

HCh

CERN Prévessin

LHC schedule

LHC past, present, and future

CMS Overview ICNFN2017 Crete 21.08.2017

Compact Muon Solenoid

CMS

CMS upgrades in 2016/17 Recent upgrades are not yet used for current results

New CMS Pixel detector:

- 3 layers (barrel) / 2 disks (endcaps) → 4 layers / 3 disks
 - Improved readout electronics
 - Innermost barrel layer closer to the interaction point
 - Lower material budget
- Very good efficiency up to 99% for all pixel detector at L=1.5e³⁴cm⁻²s⁻¹

CMS Preliminary 2017

s=13 TeV

 Expected improvements in tracking, vertexing and b-tagging

CMS upgrades in 2016/17

Full upgrade of L1 trigger system

to manage with high inst. luminosity of 1e³⁴ cm⁻²s⁻¹ and high pile-up

L1 electron/photon trigger re-optimization

- better resolution → sharper turnON
- 20% rate reduction
- 15% gain in efficiency
 Lowest unpresentation (keeping almost no PU dependence)
 M. Kazana
 CMS Overview ICNFN2017 Crete 21.08.2017

L1 muon trigger new track finders

 Improved L1 muon track finding and p_T resolution, and efficiency

Lowest unprescaled threshold
 25 GeV in 2017

CMS Performance in 2017

First illustration of di-muon spectrum taken with inclusive and dedicated muon trigger paths

Data taking in 2017

CMS Integrated Luminosity, pp, 2017, $\sqrt{\mathrm{s}}=$ 13 TeV

- CMS data-taking efficiency > 85 %
- Some time was dedicated for testing the new Pixel detector
- Successful restart of the LHC
- Reaching inst. luminosity of 1.7e³⁴ cm⁻²s⁻¹

2015

1 Jan

1 Jan

1 Jan

1 Jan

1 Jan

1 Jan

Date (UTC)

Peak Delivered Luminosity $({
m Hz/nb})$

15

10

5

2010

1 Jan

10

Data in 2016 \rightarrow new results

Excellent performance of the CMS detector

- Efficiency of data-taking (41/fb) for:
 - **38/fb**, recording > **92**%
 - 35.9/fb, good for physics > 87%

CMSLumi2016

Data included from 2016-04-22 22:48 to 2016-10-27 14:12 UTC Data included from 2016-04-22 22:48 to 2016-10-27 14:12 UTC 45 45 LHC Delivered: 41.07 fb^{-1} Luminosity ($\mathrm{Hz/nb}$) Max. inst. lumi.: 15.30 Hz/nbLuminosity (fb 40 40 CMS Recorded: 37.82 fb^{-1} 15 35 35 CMS Online Luminosity 30 30 25 25 10 10 **Fotal Integrated** 20 20 Delivered 15 15 5 10 10 Peak 5 0 2 Jun 2 Jul 1 OCT 1 May 1 Jun 2 141 1 AUG 1 sep 1 May 1 Aug 1 OCt 1 Sep Date (UTC) Date (UTC CMIS Overview ICNEN2017 Crete 21.08.2017 M. Kazana

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} = 13$ TeV

CMS Peak Luminosity Per Day, pp, 2016, $\sqrt{s} = 13$ TeV

O

CMS

Run 1&2 legacy – Nature is SM-like

Theoretical description of high-Q² processes is with high agreement with LHC data

August 2017

CMS Preliminary

 Higgs boson and precise SM measurements new possibilities for deciphering the properties opened up

CMS Physics Highlights

CMS pp Physics (in this talk):

- Standard Model
 - Electroweak Physics
- Higgs
- Top Physics
- Searches:
 - SUSY
 - Exotica
 - Dark Matter

639 collider data papers submitted as of 2017-08-11

Electroweak precise measurements

Challenging Standard Model predictions

EWK Gauge Couplings

- Diboson and W/Zjj processes extensively studied
- Vector-boson scattering is the ideal testbench to study of the EWK sector
- First 5.5 σ observation of t measurement of VBS in ZZjj channel at the LHC Evts: fully leptonic (41) final state First measurement of VBS in EWK same-sign WWjj production the **ZZ***jj* channel at the LHC Evts: two leptons of the same charge, moderate MET, 2 jets with large rapidity (stat) **EWK ZZjj** is measured with separation and large dijet mass sign. of 2.7 (1.6) σ obs.(exp.) $0.40^{+0.21}_{-0.16}$ (Bkg: non-prompt leptons and the WZ $\rightarrow 3\ell\nu$ 35.9 fb⁻¹ (13 TeV) (13 TeV) Events Events / 0.04 CMS - Data 20 Data – m_{μ±±} = 200 GeV CMS Zii EW EW WW e = 600 GeV Preliminary 18 ZZ l[1] Non-prompt WBkg. unc. $\rightarrow ZZ$ 16 aa tīZ. WWZ Others 14 Z+X100 12 **D.29** +0.02 -0.03 m_{ii} > 100 GeV 10 ZZ 8 50 Ш σ_{EW}(pp £ ь 0 500 1000 1500 2000 CMS-SMP-17-006 0.8 0.2 0.4 0.6 **BDT** output CMS-SMP-17-004 m_{ii} [GeV]

Electroweak mixing angle at 8 TeV

- Precise measurement with the forward-backward asymmetry A^{FB} of Drell-Yan (ee and μμ) events at 8 TeV Improved lepton momentum calibration, angular event weighting, and additional PDF constraints
- Sin²θ extraction by fitting A ^{FB} inv. mass and rapidity bins
- Most precise measurement of sin²θ at the LHC
- Allows to constrain PDFs

CMS

Good agreement with SM to date

Precision will be improved with increased luminosity March 2017 CMS Preliminary

CMS Overview ICNFN2017 Crete 21.08.2017

Good agreement with SM to date

Precision will be improved with increased luminosity

CMS Overview ICNFN2017 Crete 21.08.2017

QCD stress tests

CMS-SMP-16-014

- Jet production at 13 TeV with full 2016
- Measurements of the normalized inclusive 2-jet, 3-jet, and 4-jet xSec. differential in $\Delta \phi_{1,2}$
 - Observations emphasize the need to improve predictions for multijet production
- $\alpha_{c}(M_{7})$ inferred from a fit of the ratio of the

3-jet over 2-jet event xSec

CMS-SMP-16-008

CMS Overview ICNFN2017 Crete 21.08.2017

LHC is a top quark factory

- ~10 top pairs every second @ 10³⁴ cm⁻²s⁻¹ inst. luminosity
- Wide and detailed studies under top quark
- Testing SM and BMS physics

Top quark mass

Great accuracy (**~0.3%**) in the CMS **top mass** measurement from Run 1

 First top mass measurement from µ +jets with 13TeV with only 2.2/fb

Rare top processes

Top pair prod. with W/Z

Same-charge dilepton, 3- and 4-lepton final states where the jet and b-jet multiplicities are exploited to enhance the signal-to-bkg ratio

 Measured xSec. are in agreement with SM predictions

 $\sigma(ttZ) = 1.00^{+0.09}_{-0.08} (stat.)^{+0.12}_{-0.10} (sys.) pb$ $\sigma(ttW) = 0.80^{+0.12}_{-0.11} (stat.)^{+0.13}_{-0.12} (sys.) pb$

Four top production

Single-lepton +jets and the opposite-sign +jets channels

Boosted decision trees to combine information on the global event and jet properties to distinguish between tt⁻tt⁻ and tt⁻ production

Upper limit on xSec.
 combined with same-sign dilepton search

σ(tttt) < 69 fb @ 95% C.L. (7.4xSM)

CMS Overview ICNFN2017 Crete 21.08.2017

Higgs mass and xSec

- Mass measurement in golden channel: $H \rightarrow ZZ^* \rightarrow 4\ell$ via ggH, VH, VBF $m_{\rm H} = 125.26 \pm 0.20(\text{stat.}) \pm 0.08(\text{sys.})$ GeV
- As good as the world average of the ATLAS+CMS combination from Run 1 $m_H = 125.09 \pm 0.21 \,(\text{stat.}) \pm 0.11 \,(\text{syst.}) \,\text{GeV}$

Higgs couples to τ lepton

• First observation of $H \rightarrow \tau \tau$ at CMS with the full 2016 dataset

CMS Overview ICNFN2017 Crete 21.08.2017

Higgs Physics: H→bb

Dominant H decay channel (58.1%), but with huge QCD bb background

CMS-HIG-16-044

Presence of the vector boson (leptons, MET) supresses highly QCD

Higgs – top production

Direct test of H-t coupling using ttH and tHq channels

H decaying to WW*, ZZ* or ττ

- 2 same-sign leptons or at least 3 leptons, and b-tag jets
- Evidence for ttH signal

Upper limit on $\sigma^{\text{tH+ttH}} x BR$ 0.64 pb obs. (0.32 exp.)

Searches

LHC is a unique place to search for **new particles**

- directly and
- indirectly
 - precise SM measurements

Strong SUSY

Gluino or squark (gg,qq,gq) production

Electroweak SUSY

Electroweak SUSY production and decays of chargino and neutralino Statistical combination of several searches Improvement of 40 GeV on the limit mass Optimized analysis with 2- and 3-leptons $pp \rightarrow \widetilde{\chi}_2^0 \, \widetilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$ $m_{\widetilde{\chi}_1^0} \left[\text{GeV} \right]$ 450 35.9 fb⁻¹ (13 TeV CMS Preliminary - SUS-16-039, 2I SS + ≥3I (WH) 400 --- Expected CMS Preliminary 35.9 fb⁻¹ (13 TeV) -SUS-16-043, 1I (WH) -Observed GeV 300 Most sensitive analysis (expected) SUS-16-045, $H \rightarrow \gamma \gamma$ (WH) 350 -SUS-16-034, 2I OS (WZ) -This result, 3I (WZ) 300 -SUS-16-048, soft 2-lep (WZ) 200 250 This Result 2-lep OS 200 150 100 100 50 200 400 600 $m_{\chi^{\pm}} = m_{\chi^0} [GeV]$ 100 200 300 400 500 600 $m_{\widetilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle \circ}}=m_{\widetilde{\chi}^{\scriptscriptstyle \pm}}\left[GeV\right]$

CMS Overview ICNFN2017 Crete 21.08.2017

SUSY R-parity violation

33

- R-parity can be not conserved!
- Minimal flavour violation, λ_{tbs} , $g \rightarrow t t \rightarrow t b s$
- Signature: single lepton, large jet multiplicity, and large q-quark jet multiplicity, NO requirement on MET
- Signal extraction through shape fit to N_b in bins of N_{iet} and M_J

Gauge Mediated SUSY

- Search for BSM with at least 1 photon, large MET, and large H_{T}
- Sig: strongly produced GMSB with N1 $\rightarrow \gamma$ G
- New limits depending m_{neutralino} & BR:
 - m_{gluino} up to 1.5-2.0 TeV

Complementary searches:

• $\gamma V, \gamma \gamma, \gamma$ +lepton, multi-lepton

arXiv:1707.06193, CMS-SUS-16-047

Provide weaker limits

Long-lived particles

LLPs are foreseen by many BSM models

- Small coupling, small mass splitting, hidden sector
- Signature depends on lifetime

LLP: stopped particles

- LLP (gluino or |Q|=2e) is stopped inside the detector and decay to muons from rest after unknown time (sensitivity to lifetimes between 0.1 µs and 10⁶ s)
- Events recorded out-of-time with collisions with the custom trigger

CMS Overview ICNFN2017 Crete 21.08.2017

Heavy resonance searches

Many BSM models predict narrow di-X resonances X – many object in the final state analysed

Di-jets (from Axigluons, colorons, W'/Z' bosons, color octet scalars, string resonances, RS, etc)

Dijet searches

CMS Overview ICNFN2017 Crete 21.08.2017

M. Kazana

CMS Overview ICNFN2017 Crete 21.08.2017

Mono-object search results

Limits* for simplified models in which DM production is mediated by spin-1 (vector or vec-axial) or spin-0 (scalar, pseudo-scalar) particles

* strongly depend on the chosen couplings and model scenario

Boson as a mediator

Obs. (exp.) 95% C.L. upper limit of 0.53 (0.40) on the invisible BR of **SM-like 125 GeV Higgs**

M. Nazalia

CMS Overview ICNFN2017 Crete 21.08.2017

Dark Matter searches

CMS Highlights summary

- Excellent performance of LHC and the CMS detector resulting in publications with the 13 TeV data of Run 2'16
- Precise measurement of Higgs and Standard Model starting with the increase of luminosity
 - Higgs is very SM-like the observation of decays to taus and an evidence for decays to b-quarks
- New Physics can be discovered if it exists at the TeV scale
 - ~3 times more data (150/fb) till end of 2018 than now (>50/fb)
 - and ~3 orders of magnitude (3000/fb) more for HL-LHC

References:

Next CMS presentations during the conference Details and much more about the CMS physics , its performance, and the future

All CMS public results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Thank you!

Supported in part by the NCN grant: 2014/039982014/15/B/ST2/03998

M. Kazana

BACKUP

High Pt event in 2017

