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Core-Collapse Supernovae

A massive star (M > 8M,) forms an iron core; it cannot produce energy
via fusion and contraction ensues.

v

> As the density increases, electron capture becomes favorable and neutrinos
are produced:

p+ +e —n+ve
» When the Fermi energy of neutrinos gets large enough, they become
trapped and B-equilibrium is achieved.

> At this point the entropy per nucleon is S ~ 1. Dripped neutrons require
S ~ 8 thus nuclei persist until the core contracts to n ~ n,. Then
nucleonic matter emerges.

> Nucleons are compressed to n ~ 3n, where the repulsive core of the strong
interaction dominates their attraction and inhibits further contraction.

» The core rebounds and creates a shock wave that disrupts the star.
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Neutron Stars

> Matter in SB-equilibrium supported against gravitational collapse by
neutron degeneracy.

» Structure determined by simultaneous solution of:
» Interior mass,

r
m(r) = 47r/ e(r'yr?dr’
0
» Hydrostatic equilibrium,

dp __(c+p)Gm(r) +4rGrp]

dr r[r —2Gm(r)]

» EOS,

p = p(e)
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Binary Mergers

> Relativistic binaries not in equilibrium : Gravitational wave (GW) emission
leads to orbital decay.

» Early stage: only gravitational interactions, GW signal contains
information for the masses of the components.

» Coalescence stage: Tidal disruption of the lower-mass star, mass transfer
onto the more massive one. Mass transfer rate depends on C = Mys/Rns

and reflected in GW signal. Ejected matter is very neutron-rich and can
lead to heavy element formation via the r-process.

> Late stage: Black hole or hypermassive neutron star formation.
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Matter in Astrophysical Phenomena

Core-collapse  Proto-neutron Mergers of compact

supernovae stars binary stars
Baryon Density(no) 1078 - 10 1078 - 10 1078 - 10
Temperature(MeV) 0-30 0-50 0— 100
Entropy(ks) 0.5-10 0-10 0— 100
Proton Fraction 0.35—-0.45 0.01-0.3 0.01-0.6

np ~ 0.16 fm~> (equilibrium density of symmetric nuclear matter)

> Objective: Construction of EOS based on the best nuclear physics input
for use in hydrodynamic simulations of core-collapse supernova explosions
and binary mergers as well as the thermal evolution of proto-neutron stars.
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Nuclear Matter Phases

Phase I- Low Density Regime
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Matter near the Equilibrium Point (n = ng, & = 0) of SNM

v

About a = 0,
E(n, ) ~ Eo(n) 4+ Sa(n)a? + O(a*)

v

About n = no,
n—ny 2
Eo(n)Ngo—F K()( 0) =+ ...

3ng

Sa(n) ~ S, +L(” "°)+...

v

P(n,a) = n*%E ~ n? [ﬁ ("7"") + 4 az] +...

3ng 3ng

> = pn — pp = 255 = 4aSy(n)
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EOS Laboratory Constraints

» Saturation density, no = 0.16 + 0.01 fm—3

High-energy electron scattering: ro o< 7/qR, ng = ( -

)
> Energy per particle, & = —16+1 MeV
Fits to masses of atomic nuclei :

B(N> Z) = goA - bsurt'A2/3 - Sv% - bCoulZzA_1/3

> Symmetry energy, S, =30 — 35 MeV
(fits to masses of atomic nuclei)

> Slope of S, L =40 — 70MeV
(variety of experiments)

» Compression modulus, Ky = 240 + 30 MeV

1/2
. K
Giant monopole resonances : Egur = (m<f2>)

2
KA = KO + KsurfA_1/3 + KT% + KCOUI%

» Effective mass, M*/M=08+1
Neutron evaporation spectra : N(E,) o a, arermicas =

w2m*

7.
2kg

C. Constantinou Hot and Dense Matter in Astrophysics



EOS Constraints from Neutron Stars

> Largest observed mass, M = 2.01Mg
(binaries)

» Largest observed frequency, Q = 114 rad/s
(pulsars)

» Inferred radius range, 9km < R <15 km
(photospheric emission, thermal spectra)

>

Solution of Tolman-Oppenheimer-Volkoff (TOV) equations and EOS predicts
Mma)n Rmax: Imax. Qmax: etc'
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(Future) Information from Supernovae and Binary Mergers

Supernovae:
» EOS controls electron capture rates (via f1) and therefore the neutrino
signal.

» GW amplitude related to PNS compactness and thus the high-density
properties of the EOS.

Binary mergers:

» Tidal disruption of NS during coalesence of BH-NS binary depends on the
stiffness of the EOS. GW frequency sensitive to orbital frequency at
disruption.

> Short gamma-ray bursts may be produced in BH-NS mergers. The
luminocity and the lifetime of the (metastable) remnant are related to the
thermal and high-density properties of the EOS respectively.

> r-process production rates and final abundances depend on the
composition of the ejecta and thus the EOS.

» NS radii: tidal deformity, A\ < Rys.
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Approaches to the Nucleon-Nucleon Interaction

» High-precision interactions fitted to NN scattering data

> meson-exchange models

e.g. Nijmegen, Paris, Juelich-Bonn
> sums of local operators

e.g. Urbana, Argonne

» Interactions from chiral EFT

» RG-evolved potentials

Extension of the above to bulk matter by a variety of techniques: SCGF, BHF,
variational, etc.

» Phenomenological approaches: Skyrme, Gogny, RMFT
Typically treated at the HF level, fitted to extracted quantities.
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Skyrme Interactions

» Vw =32, ; Vi + 20 <k Vi, zero-range

» Evaluating A =T+ Vyn in the HF approximation gives

R R
HSkyrms 27”',77% + HTP

tn(rat+ ) [ (14 5) +

2
H(Tonn + Tpnp) [ (
0 to (1
+2 (1+ 2 (2
3 2 t3 (1
=1 _ 3=
{12 ( + 12 (2

05)]
=) =5 (+n)]

) ()

S
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Thermodynamics

» Single-particle energy spectrum:

Ei

nj

Ti

Fai

Xj =

» Rest of state variables :
> Energy density

> Chemical potentials
> Entropy density

> Pressure

> Free energy density

2OH
ki oTi

oM _

(’)n,- -
1 (2mT 3/2,__
32\ 72 1/2i

1 /2mT\%?
( ) F32i

+ e + Vi

272 h?
oo «@
X.
— — 5 _dx
o e viei+1
Eki i—Vi v,
¥, di=tl=y

2 2
€= JLT:T,,—F 2’#7’,,—}— U(n)
pi =T+ V;

2
si=+ [%;Tfﬂni(\/i - ,ui)]

P = T(sn+ sp) + pinhn + ppnp — €
F=e—-Ts
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Relativistic Mean Field Theory

> Nucleons, W, coupled to o, w, and g mesons:

L = W [’Yu (i@“ — guw" — %ﬁ“.?) - (M —gatf)] v
1] Iz 2 2 K s_ A 4
+3 _auaa o= myo” — 2(g:0)" — 15(8-0)
1 i 1z 30 -
+5 |~ 5BuB" +miﬁ“pu]

» Extensions: Hyperons, scalar-isovector §-meson, density-dependent
couplings, derivative couplings, nucleon form factors, etc.
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Thermodynamics

> Negligible meson-field fluctuations, uniform and static system =

oy = rg: <V > _mia <’;g3 §+ 2g000>
= %m—%(é g §+2g000>

wo = ,iw < U0V >= 5)—3}

po = 2?7‘17,% <V 'RV >= 2,:%

2 2
> Spectrum: eix = £(p? + M)/ + £ n 4 Zo(n; — 1))
W b

» Diagonal elements of the stress-energy tensor
oL e
Ty = B(auqi)&,q; — gL, give:

> Energy density, e =< Tgo >
> Pressure, P = % < Ti>

» Dirac mass, M*, derived from the requirement % =0
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Finite-Range Interactions: Deficiencies of Skyrme models and MFT's

> Single particle potential, U(p, p) in both Skyrme and MFT models grows
monotonically with momentum;
inconsistent with optical model fits to nucleon-nucleus reaction data.

» Microscopic calculations (RBHF, variational calculations, etc.)
show distinctly different behaviors in their momentum dependence,
consistent with optical model fits.

> The above features were found necessary to account for heavy-ion data on
transverse momentum and energy flow (in conjuction with K ~ 240 MeV).
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Degenerate Limit

Landau Fermi Liquid Theory

> Interaction switched-on adiabatically

» Entropy density and number density maintain their free Fermi-gas forms:
s = VZ[fk Infi, +(1—fi,)In(1—£,)]
n; = Z fk (T)
» [del = s = 2anT
7w m .
ai = 5 level density parameter
2 kFl
» Other thermodynamics via Maxwell's relatlons = T, dT = —nzw,
dp _ _ds dF _ _ ¢ atc
dT = “dn’ dT » Cte
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Effective masses
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Results: S and

Eth
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» The three models produce quantitatively similar results.

» Agreement with exact results extended to n ~ 0.1 fm~3.
> Better agreement for PNM than for SNM.
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Results: P, and

Now s
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> Model dependence is evident- due to

dn -~
» Agreement with exact results extended to n ~ 0.1 fm~3.

> Better agreement for PNM than for SNM.
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Results: Specific Heats
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» The MDI and MFT Cy exceed the classical value of 1.5 in the
nondegenerate limit. In this regime the T-dependence of the spectrum

becomes important.

02 0.4 06 0.8

> The peaks in Cp are due to the proximity to the nuclear liquid-gas phase

transition.
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Results: Specific Heats

T =20 MeV
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Thermal Index
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» Weak composition and temperature dependence

> Finite-range effects suppress density dependence
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Liquid-Gas Phase Transition

APR

» The critical temperature and sf X708
density of the transition for
a given composition are
obtained by the condition

daP
dn

T, =17.91 MeV

P (MeV fm’3)

_ d%p _ o 1
ne,Te ~ dn? =0

ne, Te

> (nc, T¢) is the termination point
of the phase boundary separating
the homogeneous and the 08
inhomogeneous phases of nuclear
matter.
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Approaches to the Subnuclear Region

v

>
>
>
>

>

v

>

>
>
>
>

Nuclear statistical equilibrium

Statistical ensemble of nucleons and nuclei in thermodynamic equilibrium
Chemical potentials of nuclei, pa = Napn + Zapip

Maxwell-Boltzmann statistics

Abundances determined by the Saha equation

Requires nuclear binding energies as input

Lattimer-Swesty

Single representative species of nucleus described by the liquid-drop model
Light nuclei represented by a-particles

Nucleons treated by the same model used in the homogeneous phase
Hard-sphere interactions

Equilibrium obtained by minimizing the free energy of the system wrt its
internal variables.

> Virial expansion

>

>

>

v

Nondegenerate limit expansion of the grand potential in small fugacity:
z = expl(u—m)/T] < 1

Coefficients depend on scattering phase shifts corresponding to the
interaction

Supplements NSE

Nucleons-in-cell: Molecular dynamics, Thomas-Fermi, Hartree-Fock ...
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Results using the Lattimer-Swesty approach
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Conclusions

» Matter for astrophysical applications covers a wide range in
(n, x, T)-space; much of which cannot be accessed by terrestrial
experiments.

» Upcoming astrophysical applications and laboratory experiments involving
heavy ions/rare isotopes will probe higher densities and temperatures
allowing a tighter grip on the EOS.

» The structure of the interaction, and thus m™, is crucial in the
determination of thermal effects. These, in turn, are important in neutrino
and gravitational radiation emission.

» Open questions:
» Neutron star Mmax
> Emergence of non-nucleonic DoF.
> Treatment of the inhomogeneous phase.

> Phase transitions
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