Gravity Wave signatures of Electroweak Phase Transition in Split NMSSM

Dmitry Gorbunov
Institute for Nuclear Research of RAS, Moscow

6th International Conference on New Frontiers in Physics
OAC, Chania, Crete, Greece
Standard Model: Major Problems

Gauge fields (interactions): γ, W^\pm, Z, g

Three generations of matter: $L = (\nu_L, e_L), e_R; Q = (u_L, d_L), d_R, u_R$

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe (PHENO)
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry (Ω_B)
 - Inflationary stage
 - Dark energy (Ω_Λ)
 - Strong CP-problem
 - Gauge hierarchy
 - Quantum gravity
 - ...

Split NMSSM can explain all above in green
Outline

1. Dark Matter Problem
2. Baryon Asymmetry of the Universe (BAU)
3. Supersymmetric models
4. Split SUSY: viable and cosmologically interesting
Outline

1. Dark Matter Problem
2. Baryon Asymmetry of the Universe (BAU)
3. Supersymmetric models
4. Split SUSY: viable and cosmologically interesting
Dark Matter Properties \[p = 0 \]

(If) particles:

1. stable on cosmological time-scale
2. nonrelativistic long before RD/MD-transition, \(T \approx 1 \text{ eV} \) (either Cold or Warm, \(v_{RD/MD} \lesssim 10^{-3} \))
3. (almost) collisionless
4. (almost) electrically neutral

Among the known particles

Only neutrinos (at least two species are massive) could fit
Unfortunately neutrinos do not fit (If) particles:

1. stable on cosmological time-scale
2. nonrelativistic long before RD/MD-transition, $T \sim 1$ eV (either Cold or Warm, $\nu_{RD/MD} \lesssim 10^{-3}$)
3. (almost) collisionless
4. (almost) electrically neutral

To be collected inside galaxies

If not: for bosons for fermions

Pauli blocking:

$$f(p, x) = \rho_x(x) \cdot \frac{1}{M_x} \cdot \frac{1}{\left(\sqrt{2\pi} M_x v_x\right)^3} \cdot e^{-\frac{p^2}{2M_x^2 v_x^2}} \bigg|_{p=0} \leq \frac{g_x}{(2\pi)^3}$$

$$M_x \gtrsim 750 \text{ eV}$$
Outline

1. Dark Matter Problem
2. Baryon Asymmetry of the Universe (BAU)
3. Supersymmetric models
4. Split SUSY: viable and cosmologically interesting
Matter-antimatter asymmetry

\[\eta_B \equiv \frac{n_B}{n_{\gamma}} \approx 6 \times 10^{-10} \]

\[\eta_B \sim \frac{n_q - n_{\bar{q}}}{n_q + n_{\bar{q}}} \]
Baryogenesis

Sakharov conditions of successful baryogenesis

- B-violation \((\Delta B \neq 0)\) \(XY \ldots \rightarrow X' Y' \ldots B\)
- C- & CP-violation \((\Delta C \neq 0, \Delta CP \neq 0)\) \(\bar{X} \bar{Y} \ldots \rightarrow \bar{X}' \bar{Y}' \ldots \bar{B}\)
- processes above are out of equilibrium \(X' Y' \ldots B \rightarrow XY \ldots\)

Analyses of BBN, CMB and LSS data reveal similar results, so we need baryon asymmetry production before \(T \approx 1 \text{ MeV}\)

Electroweak baryogenesis within the SM ???
B is violated, since the baryon current is anomalous

\[\partial^\mu j^B_\mu = 3 \frac{g^2}{32\pi^2} \varepsilon_{\mu\nu\lambda\rho} V^a_{\mu\nu} V^a_{\lambda\rho}, \]

\[V^a_{\mu\nu} = \partial_\mu V^a_\nu - \partial_\nu V^a_\mu + g\varepsilon^{abc} V^b_\mu V^c_\nu \]

Anomaly: only left fermions couple to fields \(V^a_\mu \).

\[\Delta B = B(t_f) - B(t_i) = \int_{t_i}^{t_f} dt \int d^3 x \partial^\mu j^B_\mu = 3 \int_{t_i}^{t_f} d^4 x \frac{g^2}{32\pi^2} \varepsilon_{\mu\nu\lambda\rho} V^a_{\mu\nu} V^a_{\lambda\rho}, \]

Strong fields are needed: \(V^a_{\mu\nu} \propto \frac{1}{g} \). Energies of such configurations (EW sphalerons) are \(\propto \frac{1}{g^2} \).

Sphalerons are in equilibrium with plasma above EW scale, at temperatures

\[100 \text{ GeV} \lesssim T \lesssim 10^{12} \text{ GeV} \]
CP is violated by CKM-phase

$$V_{CKM} = \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13}
\end{pmatrix},$$

where $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$ are mixing angles, $i, j = 1, 2, 3$, and θ_{13} is the CP-violating phase.
Phase transitions of the I and II orders
Baryons are produced on the bubble walls
However, with numbers we have in the SM

(Higgs boson mass, top-quark mass, CKM-elements, etc)

EW baryogenesis does not work
CP violation is too mild

\[V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}, \]

where \(c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij} \) are mixing angles, \(i, j = 1, 2, 3 \), and \(\theta_{13} \) is the \(CP \)-violating phase

\[s_{12} = 0.2254, \quad s_{13} = 0.0035, \quad s_{23} = 0.04118, \quad \delta_{13} = 69^\circ \pm 5^\circ. \]

Phase is always multiplied by a small modulos
EW transition is not of the I order

– No bubbles

– Sphalerons remain in equilibrium for some time after transition,

— whasing out any asymmetry
Outline

1. Dark Matter Problem
2. Baryon Asymmetry of the Universe (BAU)
3. Supersymmetric models
4. Split SUSY: viable and cosmologically interesting
Supersymmetry is a symmetry of bosons and fermions

supercharge \hat{Q}_{SUSY}

- SUSY exchanges **bosons** and **fermions**:

$$
\hat{Q}_{SUSY} \text{ boson } \rightarrow \text{ fermion}
$$

$$
\hat{Q}_{SUSY} \text{ fermion } \rightarrow \text{ boson}
$$

they become **superpartners**

- In supersymmetric theory

$$
\text{bosonic d.o.f. } = \text{ fermionic d.o.f.}
$$

$$
[\hat{Q}_{SUSY}, \hat{H}] = 0
$$

superpartners

are of the same mass and exhibit the same interactions
How does it work? Supersymmetric QED

- the same number of d.o.f. in **bosonic** and **fermionic** sectors

 Dirac fermion $\Psi : 4 \ d.o.f. \longrightarrow$ complex scalars ϕ_+, ϕ_-

 massless vector $A_\mu : 2 \ d.o.f. \longrightarrow$ Majorana fermion λ

- superpartners are of the same masses

\[m\bar{\Psi}\Psi \longrightarrow m^2\phi_+^*\phi_+ + m^2\phi_-^*\phi_- , \quad M_A = M_\lambda = 0 , \]

- and exhibit the same interactions

\[eA_\mu \bar{\Psi}\gamma^\mu\Psi \longrightarrow ieA^\mu (\phi_+ \partial_\mu \phi_+^* - \phi_-^* \partial_\mu \phi_-) - ieA^\mu (\phi_- \partial_\mu \phi_-^* - \phi_-^* \partial_\mu \phi_-) \]

\[eA_\mu \bar{\Psi}_+ \bar{\sigma}^\mu \psi_+ - eA_\mu \bar{\Psi}_- \bar{\sigma}^\mu \psi_- \longrightarrow -ie\sqrt{2} (\phi_+ \bar{\psi}_+ \bar{\lambda} - \phi_- \bar{\psi}_- \bar{\lambda}) + \text{h.c.} \]

\[\text{total derivative} \quad \longleftrightarrow \quad e^2 A_\mu A^\mu \phi_+^*\phi_+ + e^2 A_\mu A^\mu \phi_-^*\phi_- \]

\[\text{total derivative} \quad \longleftrightarrow \quad -e^2 \frac{1}{2} (\phi_+^*\phi_+ - \phi_-^*\phi_-)^2 \]
Most attractive features

- **Theory:** bosonic loops cancel fermionic ones
 - only logarithmic divergences remain:
 - stability of the hierarchical structure of energy scales, e.g.
 - \(M_W \ll M_{Pl} \) is stable

- **Phenomenology:** number of particles gets doubled !!
 - get new interactions but with the same coupling constants !!
SUSY: a couple is more stable and promising
Supersymmetrizing the Standard Model
MSSM

<table>
<thead>
<tr>
<th>Particles</th>
<th>Superpartners</th>
</tr>
</thead>
<tbody>
<tr>
<td>gluons, g</td>
<td>gluino, \tilde{g}</td>
</tr>
<tr>
<td>photon, γ</td>
<td>photino, $\tilde{\gamma}$</td>
</tr>
<tr>
<td>weak gauge bosons, W^\pm, Z</td>
<td>winos, zino, \tilde{W}^\pm, \tilde{Z}</td>
</tr>
<tr>
<td>quarks, leptons, q, l</td>
<td>squarks, sleptons, \tilde{q}, \tilde{l}</td>
</tr>
<tr>
<td>r.h. electron, e_R</td>
<td>r.h. selectron, \tilde{e}_R</td>
</tr>
<tr>
<td>l.h. top, t_L</td>
<td>l.h. stop, \tilde{t}_L</td>
</tr>
<tr>
<td>neutrino, ν</td>
<td>sneutrino, $\tilde{\nu}$</td>
</tr>
</tbody>
</table>

SM Higgs boson

To avoid the anomaly due to higgsino set

- two Higgs doublets, h, H, A, H^\pm
- neutral \tilde{h}, \tilde{H} and charged \tilde{H}^\pm
- or $\chi_{1,2}^0$ and χ^\pm higgsinos
Problems of a supersymmetric extension

- there are no superpartners of the same mass with the same couplings
 \[\rightarrow \quad \text{SUSY must be spontaneously broken} \]
- superpartners are heavy
 - bases are not aligned
 - Higgs makes SM particles (and superpartners) massive
 - hundred new parameters
 \[\leftarrow \quad \text{mixing and FCNC} \]
At least a huge gap is between us
SUSY is broken and thereby even more attractive

- Higgs mass gets corrections of the types
 \[\propto \log\left(\frac{m_t^2}{m_{\tilde{t}}^2}\right), \quad \text{and} \quad \propto \left(\frac{m_{\tilde{t}}^2}{m_t^2} - 1\right), \]

 the superpartners must be not far from the EW-scale

- Massive, emerge in pairs \implies\ lightest superpartner is stable (LSP)
 R-parity

- Most natural DM candidate (WIMPs) we have

- 2 Higgs doublets can arrange EW phase transition of the I order
 additional sources of CP-violation
 \implies\ prospects for EW baryogenesis

- There are several anomalies in particle physics (and closely related) experiments:
 \(g - 2 \),
 \[\frac{\text{Br}(B \to K^*\mu^+\mu^-)}{\text{Br}(B \to D^{(*)}\tau\nu)}, \quad \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}, \quad \frac{\Gamma(B \to K\mu^+\mu^-)}{\Gamma(B \to Ke^+\ell^-)} \]
Outline

1. Dark Matter Problem
2. Baryon Asymmetry of the Universe (BAU)
3. Supersymmetric models
4. Split SUSY: viable and cosmologically interesting
Split SUSY: heavy sfermions, light gauginos $M_{\tilde{Q}} \gg M_\lambda$

Is it possible in SUSY?

Yes, moreover, someones argued natural

- In many (simple) models where SUSY is broken spontaneously gauginos are light (massless), that was the problem
- the hierarchy $M_{\tilde{Q}} \gg M_\lambda$ is stable with respect to quantum corrections (RG-evolution)

$$\frac{dM_\lambda_i}{d \log Q^2} \propto \alpha_i M_{\lambda_i} + \alpha_i y^2 A$$

$$\frac{dM^2_{\tilde{Q}}}{d \log Q^2} \propto y^2 M^2_{\tilde{Q}} + \cdots + \alpha_i M^2_{\lambda_i}$$

$$\frac{dA_i}{d \log Q^2} \propto y^2 A_i + \cdots + \alpha_i M_{\lambda_i}$$
Split SUSY: $M_{\tilde{Q}} \gg M_\lambda$

@ 1 TeV: gauginos + higgsinos + SM-like Higgs boson

- dark matter (natural)
- gauge coupling unification (feature of Split MSSM)
- no FCNC (natural)
- stability of gauge hierarchy (LOST)
 - Though... in MSSM is lost (to some extent) as well: $(100 \text{ GeV})^2 \ll (1 \text{ TeV})^2$
 - Splitting scale is not very high in fact

out of LHC reach though
Why NMSSM? Adding 4 d.o.f. to 230...

- μ-problem:
 - MSSM: $\hat{\mathcal{W}} = \mu \hat{H}_u \hat{H}_d$
 - NMSSM: $\hat{\mathcal{W}} = \hat{\mu} \hat{H}_u \hat{H}_d$

- mechanism of baryogenesis within the Split SUSY:
 - NMSSM: Electroweak

EWB does not work in MSSM:
the Higgs sector mimics SM, no EW phase transition of the I order

MSSM: new sources of CP-violation
NMSSM: + the strongly first order phase transition

Electroweak baryogenesis is attractive:
both ingredients can be directly tested

The main concern: SM Higgs

S.Demidov, D.G., D.Kirpichnikov (2016)
BAU in Split NMSSM

EWB works perfectly

\[\Delta_0 = 8.3 \times 10^{-11} \] or \[\eta_B \equiv n_B/n_\gamma = 6.2 \times 10^{-10} \]
How to test Split NMSSM?

- New particles
 - Higgs sector: new scalar
 - Neutralino sector: singlino
 - New CP-sources
 - EW 1st order phase transition:
 - Bubbles can produce gravitational waves
 - Contribute to EDMs
Electric dipole moments of electron and neutron

CP-source: the same contributions to EDMs as in Split MSSM but here one has generally two additional phases,

\[
\begin{align*}
\phi_1 &= \arg(\tilde{g}_u \tilde{g}_d^* M_2 \tilde{\mu}) , \\
\phi_2 &= \arg \left(\kappa k^* \lambda_u \lambda_d (\tilde{\mu}^*)^{-2} \right) , \\
\phi_3 &= \arg (\lambda_u \lambda_d^* \tilde{g}_u \tilde{g}_d) \\
\tilde{\mu} &= \mu + \kappa (v_s + iv_P) / \sqrt{2} \\
d_f &= d_{h\gamma} + d_{WW} + d_{hZ}
\end{align*}
\]
EDMs in Split NMSSM

a factor of 30 improvement in electron EDM for last 10 years

Also light charginos are disfavored from LHC
the rest ($m_{\chi^+} \approx 200 - 240$ GeV) can be tested in $\chi_1^+ \rightarrow \chi_1^0 + W^+$
SPlit SUSY: PHENO viable and COSMO interesting

GW in Split NMSSM

M_s = 10 TeV

M_s = 12 TeV
Conclusions:

- SUSY is wonderful and we search for it
- Split NMSSM is a viable option
- It can explain DM and BAU
- The explanation can be tested
 - @ colliders. . . light chargino
 - @ new searches for electron and neutrons
 - EDMs
 - @ gravitational interferometers