
On perturbations in Horndeski theories

arXiv:1708.04262v1

R. Kolevatov, S. Mironov, V.Rubakov, N. Suchov, VV

Institute for Nuclear Reseach of the Russian Academy of Sciences

(INR RAS)

ICNFP 2017

R. Kolevatov, S. Mironov, V.Rubakov, N. Suchov, VV (Institute for Nuclear Reseach of the Russian Academy of Sciences (INR RAS))On perturbations in Horndeski theories ICNFP 2017 1 / 25



Horndeski theory

S =

∫
d
4x
√
−g (L2 + L3 + L4 + L5) ,

L2 = F (π,X ),

L3 = K (π,X )�π,

L4 = −G4(π,X )R + 2G4X (π,X )
[
(�π)2 − π;µνπ;µν

]
,

L5 = G5(π,X )Gµνπ;µν +
1

3
G5X

[
(�π)3 − 3�ππ;µνπ

;µν + 2π;µνπ
;µρπ ν

;ρ

]
where π is the Galileon �eld, X = gµνπ,µπ,ν , π,µ = ∂µπ, π;µν = OνOµπ,

�π = gµνOνOµπ, G4X = ∂G4/∂X
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Stability issue

The pathologies if any show up in the behaviour of small perturbations about

the background π0

π = π0 + χ

The quadratic Lagrangian in Minkowski space, that leads to a second order

�eld equation for χ

L(2)χ =
1

2
Uχ̇2 − 1

2
V (∂iχ)2 − 1

2
Wχ2 (2)

where U, V , W depend on time.
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Stability issue

L(2)χ =
1

2
Uχ̇2 − 1

2
V (∂iχ)2 − 1

2
Wχ2 (3)

We will consider only high momentum regime.

So U, V , W may be considered constant.

Dispersion relation and energy density for χ read:

Uω2 = Vp2 + W , (4)

T
(2)
00 =

1

2
Uχ̇2 +

1

2
V (∂iχ)2 +

1

2
Wχ2 (5)
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Possible types of pathologies

L(2)χ =
1

2
Uχ̇2 − 1

2
V (∂iχ)2 − 1

2
Wχ2

Uω2 = Vp2 + W ,

T
(2)
00 =

1

2
Uχ̇2 +

1

2
V (∂iχ)2 +

1

2
Wχ2

(a) Gradient instability:

U > 0 , V < 0 , or U < 0 , V > 0 .

"Frequencies" ω are imaginary at high momenta

−→ perturbations grow arbitrarily fast
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Possible types of pathologies

L(2)χ =
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Uω2 = Vp2 + W ,

T
(2)
00 =

1

2
Uχ̇2 +

1

2
V (∂iχ)2 +

1

2
Wχ2

(b) Ghost instability:

U < 0 , V < 0 .

"Frequencies" ω are real at high momenta

−→ in classical �eld theory the background is stable

BUT quantum-mechanically unstable.
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Possible types of pathologies

L(2)χ =
1

2
Uχ̇2 − 1

2
V (∂iχ)2 − 1

2
Wχ2

Uω2 = Vp2 + W ,

T
(2)
00 =

1

2
Uχ̇2 +

1

2
V (∂iχ)2 +

1

2
Wχ2

(c) Tachyonic instability:

U > 0 , V > 0 , W < 0 .

"Frequencies" ω are imaginary at su�ciently low momenta Vp2 < |W |

−→ there are perturbations that grow

If time scale |W |−1/2 is shorter than the characteristic scale of the

background πc , it is a problem
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Stable background case

L(2)χ =
1

2
Uχ̇2 − 1

2
V (∂iχ)2 − 1

2
Wχ2

Uω2 = Vp2 + W ,

T
(2)
00 =

1

2
Uχ̇2 +

1

2
V (∂iχ)2 +

1

2
Wχ2

U > 0 , V > 0 , W ≥ 0 .

Di�erent regimes of propagation of χ−waves:

V > U superluminal propagation

V = U propagation at the speed of light

V < U subluminal propagation
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In Horndeski theories only the scalar sector is potentially pathological.

The following argument is formulated for L3 subclass of Horndeski theories +

gravity

L3 = − 1

2κ
R + F (X , π) + K (X , π)�π

In order to perform a stability analysis at the high momentum regime, one

needs to obtain the quadratic Lagrangian for perturbations.
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KYY approach

The method adopted in

T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1105.5723

1) Impose unitary gauge:

χ = 0

2) Plug perturbed metric into the action and expand it up to the second order

3) Integrate out all non-dynamical degrees of freedom
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DPSV approach

The method adopted in

C. De�ayet, O. Pujolas, I. Sawicki and A. Vikman, 1008.0048.

Originally applied to

L3 = − 1

2κ
R + F (X , π) + K (X , π)�π.

Corresponding Galileon �eld equation (terms without second derivatives are

omitted):

− 4FXX∇µ∇νπ∂µπ∂νπ − 2FX�π + 2Kπ�π − 2KπX�π∂µπ∂
µπ

−4KXX�π∇µ∇νπ∂µπ∂νπ − 2KX∇µ∇µπ∇ν∇νπ + 4KπX∇µ∇νπ∂µπ∂νπ

+4KXX∇ρ∇νπ∇ρ∇µπ∂µπ∂νπ + 2KX∇µ∇νπ∇µ∇νπ + 2KXRµν∂
µπ∂νπ = 0.
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Quadratic action for perturbations in L3

L3 = − 1

2κ
R + F (X , π) + K (X , π)�π

in FLRW background

ds2 = dt2 − a2(t)dx2.

Parametrisation of metric perturbations (gauge partially �xed):

h00 = 2α, h0i = −∂iβ, hij = −a2 · 2ζδij

Galileon pertrubations about the homogeneous background

π → π(t) + χ.

We are interested in high momentum and frequency modes, therefore we

neglect terms in the action without derivatives of ζ and χ, as well as linear in

ζ̇, χ̇. But we keep all terms that include α and ∂iβ.
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The derivative part of quadratic action for metric and Galileon perturbations:

S
(2)
gr+gal =

∫
dt d3x a3

(
− 3

κ
ζ̇2 +

1

κ

(
−→
∇ζ)2

a2
+ Σα2 − 2Θα

−→
∇2β

a2
+

2

κ
ζ̇

−→
∇2β

a2
+

+ 6Θαζ̇ − 2

κ
α

−→
∇2ζ

a2
+ 2α

−→
∇2χ

a2
KX π̇

2 − 2χ̇

−→
∇2β

a2
KX π̇

2−

− 6χζ̈KX π̇
2 + 2Γαχ̇+ 2Λ

−→
∇2β

a2
χ+Aχ̇2 − B (

−→
∇χ)2

a2

)
,

where

A,B,Σ,Θ, Γ,Λ are some expressions of Galileon functions.
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Constraint equations for non-dynamical degrees of freedom:

−→
∇2β

a2
: α =

1

Θ

(
1

κ
ζ̇ − χ̇KX π̇

2 + Λχ

)
,

α :

−→
∇2β

a2
= − 1

κ

−→
∇2ζ

a2
+

−→
∇2χ

a2
KX π̇

2+
1

Θ

(
Σ

Θ

ζ̇

κ
−Σ

Θ
χ̇KX π̇

2+
Σ

Θ
Λχ+3Θζ̇+Γχ̇

)
.

According to constraints α is linear in derivatives, while
−→
∇2β is quadratic.
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Integrating out α and
−→
∇2β results in

S
(2)
gr+gal =

∫
dt d3x a3

[
1

π̇2

(
1

κ2
Σ

Θ2
+

3

κ

)(
ȧ

a
χ̇− ζ̇π̇

)2

− 1

π̇2

(
1

a · κ2
d

dt

[ a
Θ

]
− 1

κ

)(
ȧ

a

−→
∇χ
a
−
−→
∇ζ
a
π̇

)2 ]
.

(6)

The combination that enters here,

ȧ

a
χ− π̇ζ ,

is invariant under the residual gauge transformations

χ→ χ+ ξ0π̇, ζ → ζ + ξ0
ȧ

a
, α→ α + ξ̇0, β → β − ξ0

modulo the derivatives of the background terms, which are omitted. So the

action (6) is gauge invariant.
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DPSV approach analysis

The Galileon �eld equation for L3:

− 4FXX∇µ∇νπ∂µπ∂νπ − 2FX�π + 2Kπ�π − 2KπX�π∂µπ∂
µπ

−4KXX�π∇µ∇νπ∂µπ∂νπ − 2KX∇µ∇µπ∇ν∇νπ + 4KπX∇µ∇νπ∂µπ∂νπ

+4KXX∇ρ∇νπ∇ρ∇µπ∂µπ∂νπ + 2KX∇µ∇νπ∇µ∇νπ + 2KXRµν∂
µπ∂νπ = 0.

There is a speci�c set of terms with second derivatives that may in principle

arise in the perturbed Galileon equation:
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There is a speci�c set of terms with second derivatives that may in principle

arise in the perturbed Galileon equation:

χ̈,
−→
∇2χ, ζ̈,

−→
∇2ζ, α̇,

−→
∇2β.
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The equation has to be invariant under gauge transformations

χ→ χ+ ξ0π̇, α→ α + ξ̇0, β → β − ξ0.

The only possible gauge invariant combinations of χ, α and β, which are

quadratic in derivatives

Q (χ̈− α̇π̇)− P
(−→
∇2χ+

−→
∇2βπ̇

)
= 0,

where Q and P are expressions with Lagrangian functions (for L3 these are F

and K ).

This is the general form of the Galileon �eld equation after the trick.
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Gauging out α̇π̇ and
−→
∇2βπ̇

α and β in terms of ζ and χ:

α = uζ̇ + v χ̇, (7a)

β = wζ + zχ, (7b)

where u, v , w and z are some functions.

Let us choose the following gauge �xing condition in the arbitrary form:

β = wζ + zχ = Aχ,

where A = A(t) is some function of t.

Expressing ζ and α from (7) gives

ζ =
1

w
(A− z)χ,

α =
( u

w
(A− z) + v

)
χ̇.
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The general form of Galileon equation with α and β expressed in terms of χ

Q (χ̈− α̇π̇)− P
(−→
∇2χ+

−→
∇2βπ̇

)
= 0.
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The general form of Galileon equation with α and β expressed in terms of χ

Q
(
χ̈−

( u

w
(A− z) + v

)
χ̈π̇
)
− P

(−→
∇2χ+ A

−→
∇2χπ̇

)
= 0.

Since gauge invariance of �eld equations should be preserved modulo �eld

rede�nition

A = − u

w
(A− z)− v .

as

α = uζ̇ + v χ̇ and β = wζ + zχ.

Q (χ̈− α̇π̇)− P
(−→
∇2χ+

−→
∇2βπ̇

)
= 0.
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Since gauge invariance of �eld equations should be preserved modulo �eld

rede�nition

A = − u

w
(A− z)− v .

u

w
= −1, −z − v = 0 −→ α = −β̇

as

α = uζ̇ + v χ̇ and β = wζ + zχ.

Q (χ̈− α̇π̇)− P
(−→
∇2χ+

−→
∇2βπ̇

)
= 0.
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Now we can �x the gauge taking A = 0:

β = wζ + zχ = Aχ→ 0,

α = −β̇ → 0,

χ→ χ− ξ0π̇ ≡ χ̃.

The only degree of freedom that is left is χ.
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Equivalence of KYY and DPSV approaches

Gauge invariant action:

S
(2)
gr+gal =

∫
dt d3x a3

[
1

π̇2

(
1

κ2
Σ

Θ2
+

3

κ

)(
ȧ

a
χ̇− ζ̇π̇

)2

− 1

π̇2

(
1

a · κ2
d

dt

[ a
Θ

]
− 1

κ

)(
ȧ

a

−→
∇χ
a
−
−→
∇ζ
a
π̇

)2 ]
.

(a) KYY approach amounts to choosing unitary gauge: χ = 0.

(b) To restore the result of DPSV approach one needs to express ζ in terms of χ:

ζ = Q · χ
Q = κKX π̇

2

Both methods correspond to choosing a speci�c gauge in the gauge invariant

action.
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ȧ

a
χ̇− ζ̇π̇

)2

− 1

π̇2

(
1

a · κ2
d

dt

[ a
Θ

]
− 1

κ

)(
ȧ
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DPSV trick for L4

L3 = F (X , π) + K (X , π)�π,

L4 = −G4(π,X )R + 2G4X (π,X )
[
(�π)2 −∇µ∇νπ ∇µ∇νπ

]
.

Extra terms with second derivatives of metric in the Galileon �eld equation:

2Rµν∇µπ∇νπ KX + 2R∇µ∇µπ G4X − 4Rµν∇µ∇νπ G4X+

+4R∇µπ∇µ∇νπ∇νπ G4XX − 16Rµν∇µπ∇ν∇ρπ∇ρπ G4XX+

+ 8Rµν∇µπ∇νπ∇ρ∇ρπ G4XX − R G4π + 2R∇µπ∇µπ G4πX−

−8Rµν∇µπ∇νπ G4πX − 8Rµνρσ∇µπ∇ρπ∇ν∇σπ G4XX + · · · = 0,

and Einstein equations

2Gµν G4 + 2R∇µπ∇νπ G4X − 4Rνρ∇µπ∇ρπ G4X−

−4Rµρ∇νπ∇ρπ G4X + 4gµνRρσ∇ρπ∇σπ G4X−

−4Rµρνσ∇ρπ∇σπ G4X + · · · = 0.
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Conclusion

1. Both KYY and DPSV approach correspond to a speci�c gauge choice.

2. If DPSV trick works, inevitably α = −β̇.

3. DPSV trick applies to L4 case.
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Thank you for your attention!
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