On perturbations in Horndeski theories arXiv:1708.04262v1

R. Kolevatov, S. Mironov, V. Rubakov, N. Suchov, VV

Institute for Nuclear Reseach of the Russian Academy of Sciences (INR RAS)

ICNFP 2017

Horndeski theory

$$\begin{split} S &= \int \mathrm{d}^4 x \sqrt{-g} \left(\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right), \\ \mathcal{L}_2 &= F(\pi, X), \\ \mathcal{L}_3 &= K(\pi, X) \Box \pi, \\ \mathcal{L}_4 &= -G_4(\pi, X) R + 2G_{4X}(\pi, X) \left[(\Box \pi)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right], \\ \mathcal{L}_5 &= G_5(\pi, X) G^{\mu\nu} \pi_{;\mu\nu} + \frac{1}{3} G_{5X} \left[(\Box \pi)^3 - 3 \Box \pi \pi_{;\mu\nu} \pi^{;\mu\nu} + 2\pi_{;\mu\nu} \pi^{;\mu\rho} \pi_{;\rho}^{\;\nu} \right] \\ \text{where } \pi \text{ is the Galileon field, } X &= g^{\mu\nu} \pi_{,\mu} \pi_{,\nu}, \; \pi_{,\mu} = \partial_{\mu} \pi, \; \pi_{;\mu\nu} = \nabla_{\nu} \nabla_{\mu} \pi, \\ \Box \pi &= g^{\mu\nu} \nabla_{\nu} \nabla_{\mu} \pi, \; G_{4X} = \partial G_4 / \partial X \end{split}$$

The pathologies if any show up in the behaviour of small perturbations about the background π_0

 $\pi=\pi_{\rm O}+\chi$

The pathologies if any show up in the behaviour of small perturbations about the background π_0

$$\pi = \pi_0 + \chi$$

The quadratic Lagrangian in Minkowski space, that leads to a second order field equation for χ

$$L_{\chi}^{(2)} = \frac{1}{2}U\dot{\chi}^2 - \frac{1}{2}V(\partial_i\chi)^2 - \frac{1}{2}W\chi^2$$
(2)

where U, V, W depend on time.

$$L_{\chi}^{(2)} = \frac{1}{2}U\dot{\chi}^2 - \frac{1}{2}V(\partial_i\chi)^2 - \frac{1}{2}W\chi^2$$

We will consider only high momentum regime.

(3)

$$L_{\chi}^{(2)} = \frac{1}{2}U\dot{\chi}^{2} - \frac{1}{2}V(\partial_{i}\chi)^{2} - \frac{1}{2}W\chi^{2}$$

We will consider only high momentum regime.

So U, V, W may be considered constant.

(3)

$$L_{\chi}^{(2)} = \frac{1}{2}U\dot{\chi}^{2} - \frac{1}{2}V(\partial_{i}\chi)^{2} - \frac{1}{2}W\chi^{2}$$
(3)

We will consider only high momentum regime.

So U, V, W may be considered constant.

Dispersion relation and energy density for χ read:

$$U\omega^2 = V\mathbf{p}^2 + W , \qquad (4)$$

$$T_{00}^{(2)} = \frac{1}{2}U\dot{\chi}^2 + \frac{1}{2}V(\partial_i\chi)^2 + \frac{1}{2}W\chi^2$$
(5)

$$\begin{aligned} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{aligned}$$

(a) Gradient instability:

$$U>0\;, \qquad V<0\;, \qquad {\rm or} \quad U<0\;, \qquad V>0\;.$$

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

(a) Gradient instability:

$$U>0\;, \qquad V<0\;, \qquad {\rm or} \quad U<0\;, \qquad V>0\;.$$

"Frequencies" ω are imaginary at high momenta

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

(a) Gradient instability:

$$U>0\;, \qquad V<0\;, \qquad {\rm or} \quad U<0\;, \qquad V>0\;.$$

"Frequencies" ω are imaginary at high momenta

 \longrightarrow perturbations grow arbitrarily fast

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

(b) Ghost instability:

 $U<0\;,\qquad V<0\;.$

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

(b) Ghost instability:

$$U < 0$$
, $V < 0$.

"Frequencies" ω are real at high momenta

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

(b) Ghost instability:

$$U < 0$$
, $V < 0$.

"Frequencies" ω are real at high momenta

 \rightarrow in *classical* field theory the background is stable

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

(b) Ghost instability:

$$U < 0$$
, $V < 0$.

"Frequencies" ω are real at high momenta

 \rightarrow in *classical* field theory the background is stable

BUT quantum-mechanically unstable.

$$\begin{aligned} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{aligned}$$

(c) Tachyonic instability:

$$U>0$$
, $V>0$, $W<0$.

$$\begin{aligned} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{aligned}$$

(c) Tachyonic instability:

$$U>0$$
, $V>0$, $W<0$.

"Frequencies" ω are imaginary at sufficiently *low* momenta $V\mathbf{p}^2 < |W|$

$$\begin{aligned} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{aligned}$$

(c) Tachyonic instability:

$$U>0$$
, $V>0$, $W<0$.

"Frequencies" ω are imaginary at sufficiently *low* momenta $V\mathbf{p}^2 < |W|$ \longrightarrow there are perturbations that grow

$$\begin{aligned} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{aligned}$$

(c) Tachyonic instability:

$$U>0$$
, $V>0$, $W<0$.

"Frequencies" ω are imaginary at sufficiently *low* momenta $V\mathbf{p}^2 < |W|$ \longrightarrow there are perturbations that grow If time scale $|W|^{-1/2}$ is shorter than the characteristic scale of the

If time scale $|W|^{-1/2}$ is shorter than the characteristic scale of the background π_c , it is a problem

Stable background case

$$\begin{aligned} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{aligned}$$

$$U>0\;, \qquad V>0\;, \qquad W\geq 0\;.$$

Stable background case

$$\begin{split} L_{\chi}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 - \frac{1}{2} V (\partial_i \chi)^2 - \frac{1}{2} W \chi^2 \\ U \omega^2 &= V \mathbf{p}^2 + W , \\ T_{00}^{(2)} &= \frac{1}{2} U \dot{\chi}^2 + \frac{1}{2} V (\partial_i \chi)^2 + \frac{1}{2} W \chi^2 \end{split}$$

$$U>0$$
, $V>0$, $W\geq 0$.

Different regimes of propagation of χ -waves:

V>U superluminal propagation V=U propagation at the speed of light V<U subluminal propagation

In Horndeski theories only the scalar sector is potentially pathological.

In Horndeski theories only the scalar sector is potentially pathological.

The following argument is formulated for \mathcal{L}_3 subclass of Horndeski theories + gravity

$$\mathcal{L}_3 = -\frac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi$$

In Horndeski theories only the scalar sector is potentially pathological.

The following argument is formulated for \mathcal{L}_3 subclass of Horndeski theories + gravity

$$\mathcal{L}_3 = -\frac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi$$

In order to perform a stability analysis at the high momentum regime, one needs to obtain the quadratic Lagrangian for perturbations.

KYY approach

The method adopted in

T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1105.5723

KYY approach

The method adopted in

- T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1105.5723
- 1) Impose unitary gauge:

 $\chi = 0$

KYY approach

The method adopted in

T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1105.5723

1) Impose unitary gauge:

$\chi = 0$

2) Plug perturbed metric into the action and expand it up to the second order

The method adopted in

T. Kobayashi, M. Yamaguchi and J. Yokoyama, 1105.5723

1) Impose unitary gauge:

$\chi = \mathbf{0}$

- 2) Plug perturbed metric into the action and expand it up to the second order
- 3) Integrate out all non-dynamical degrees of freedom

DPSV approach

The method adopted in

C. Deffayet, O. Pujolas, I. Sawicki and A. Vikman, 1008.0048.

DPSV approach

The method adopted in C. Deffayet, O. Pujolas, I. Sawicki and A. Vikman, 1008.0048. Originally applied to

$$\mathcal{L}_3 = -rac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi.$$

DPSV approach

The method adopted in

C. Deffayet, O. Pujolas, I. Sawicki and A. Vikman, 1008.0048.

Originally applied to

$$\mathcal{L}_3 = -\frac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi.$$

Corresponding Galileon field equation (terms without second derivatives are omitted):

$$-4F_{XX}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2F_{X}\Box\pi + 2K_{\pi}\Box\pi - 2K_{\pi X}\Box\pi\partial_{\mu}\pi\partial^{\mu}\pi \\ -4K_{XX}\Box\pi\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2K_{X}\nabla_{\mu}\nabla^{\mu}\pi\nabla_{\nu}\nabla^{\nu}\pi + 4K_{\pi X}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi \\ +4K_{XX}\nabla_{\rho}\nabla_{\nu}\pi\nabla^{\rho}\nabla_{\mu}\pi\partial^{\mu}\pi\partial^{\nu}\pi + 2K_{X}\nabla^{\mu}\nabla_{\nu}\pi\nabla_{\mu}\nabla^{\nu}\pi + \frac{2K_{X}R_{\mu\nu}\partial^{\mu}\pi\partial^{\nu}\pi}{2} = 0.$$

$$\mathcal{L}_3 = -rac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi$$

in FLRW background

$$ds^2 = dt^2 - a^2(t)d\mathbf{x}^2.$$

$$\mathcal{L}_3 = -\frac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi$$

in FLRW background

$$ds^2 = dt^2 - a^2(t)d\mathbf{x}^2.$$

Parametrisation of metric perturbations (gauge partially fixed):

$$h_{00} = 2\alpha, \quad h_{0i} = -\partial_i\beta, \quad h_{ij} = -a^2 \cdot 2\zeta \delta_{ij}$$

$$\mathcal{L}_3 = -\frac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi$$

in FLRW background

$$ds^2 = dt^2 - a^2(t)d\mathbf{x}^2.$$

Parametrisation of metric perturbations (gauge partially fixed):

$$h_{00} = 2\alpha$$
, $h_{0i} = -\partial_i\beta$, $h_{ij} = -a^2 \cdot 2\zeta\delta_{ij}$

Galileon pertrubations about the homogeneous background

$$\pi \to \pi(t) + \chi.$$

$$\mathcal{L}_3 = -rac{1}{2\kappa}R + F(X,\pi) + K(X,\pi)\Box\pi$$

in FLRW background

$$ds^2 = dt^2 - a^2(t)d\mathbf{x}^2.$$

Parametrisation of metric perturbations (gauge partially fixed):

$$h_{00} = 2\alpha$$
, $h_{0i} = -\partial_i\beta$, $h_{ij} = -a^2 \cdot 2\zeta \delta_{ij}$

Galileon pertrubations about the homogeneous background

$$\pi \to \pi(t) + \chi.$$

We are interested in high momentum and frequency modes, therefore we neglect terms in the action without derivatives of ζ and χ , as well as linear in $\dot{\zeta}$, $\dot{\chi}$. But we keep all terms that include α and $\partial_i\beta$.

The derivative part of quadratic action for metric and Galileon perturbations:

$$\begin{split} S_{gr+gal}^{(2)} &= \int \mathrm{d}t \, \mathrm{d}^3 x \, a^3 \left(-\frac{3}{\kappa} \dot{\zeta}^2 + \frac{1}{\kappa} \frac{(\overrightarrow{\nabla}\zeta)^2}{a^2} + \Sigma \alpha^2 - 2\Theta \alpha \frac{\overrightarrow{\nabla}^2 \beta}{a^2} + \frac{2}{\kappa} \dot{\zeta} \frac{\overrightarrow{\nabla}^2 \beta}{a^2} + \right. \\ &+ 6\Theta \alpha \dot{\zeta} - \frac{2}{\kappa} \alpha \frac{\overrightarrow{\nabla}^2 \zeta}{a^2} + 2\alpha \frac{\overrightarrow{\nabla}^2 \chi}{a^2} K_X \dot{\pi}^2 - 2 \dot{\chi} \frac{\overrightarrow{\nabla}^2 \beta}{a^2} K_X \dot{\pi}^2 - \\ &- 6\chi \ddot{\zeta} K_X \dot{\pi}^2 + 2\Gamma \alpha \dot{\chi} + 2\Lambda \frac{\overrightarrow{\nabla}^2 \beta}{a^2} \chi + \mathcal{A} \dot{\chi}^2 - \mathcal{B} \frac{(\overrightarrow{\nabla}\chi)^2}{a^2} \right), \end{split}$$

where

 $\mathcal{A}, \mathcal{B}, \Sigma, \Theta, \Gamma, \Lambda \quad \text{are some expressions of Galileon functions.}$

Constraint equations for non-dynamical degrees of freedom:

$$\begin{aligned} \frac{\overrightarrow{\nabla}^2 \beta}{a^2} : \ \alpha &= \frac{1}{\Theta} \left(\frac{1}{\kappa} \dot{\zeta} - \dot{\chi} K_X \dot{\pi}^2 + \Lambda \chi \right), \\ \alpha : \ \frac{\overrightarrow{\nabla}^2 \beta}{a^2} &= -\frac{1}{\kappa} \frac{\overrightarrow{\nabla}^2 \zeta}{a^2} + \frac{\overrightarrow{\nabla}^2 \chi}{a^2} K_X \dot{\pi}^2 + \frac{1}{\Theta} \left(\frac{\Sigma}{\Theta} \frac{\dot{\zeta}}{\kappa} - \frac{\Sigma}{\Theta} \dot{\chi} K_X \dot{\pi}^2 + \frac{\Sigma}{\Theta} \Lambda \chi + 3\Theta \dot{\zeta} + \Gamma \dot{\chi} \right). \end{aligned}$$

According to constraints α is linear in derivatives, while $\overrightarrow{\nabla}^2 \beta$ is quadratic.

Integrating out α and $\overrightarrow{\nabla}{}^2\beta$ results in

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^{3}x \,a^{3} \Bigg[\frac{1}{\dot{\pi}^{2}} \left(\frac{1}{\kappa^{2}} \frac{\Sigma}{\Theta^{2}} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^{2} \\ - \frac{1}{\dot{\pi}^{2}} \left(\frac{1}{a \cdot \kappa^{2}} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^{2} \Bigg].$$
(6)

Integrating out α and $\overrightarrow{\nabla}{}^2\beta$ results in

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^{3}x \,a^{3} \Bigg[\frac{1}{\dot{\pi}^{2}} \left(\frac{1}{\kappa^{2}} \frac{\Sigma}{\Theta^{2}} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^{2} \\ - \frac{1}{\dot{\pi}^{2}} \left(\frac{1}{a \cdot \kappa^{2}} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^{2} \Bigg].$$
(6)

The combination that enters here,

$$\frac{\dot{a}}{a}\chi - \dot{\pi}\zeta$$
,

is invariant under the residual gauge transformations

$$\chi \to \chi + \xi_0 \dot{\pi}, \quad \zeta \to \zeta + \xi_0 \frac{\dot{a}}{a}, \quad \alpha \to \alpha + \dot{\xi_0}, \quad \beta \to \beta - \xi_0$$

modulo the derivatives of the background terms, which are omitted. So the action (6) is gauge invariant.

DPSV approach analysis

The Galileon field equation for \mathcal{L}_3 :

$$-4F_{XX}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2F_{X}\Box\pi + 2K_{\pi}\Box\pi - 2K_{\pi X}\Box\pi\partial_{\mu}\pi\partial^{\mu}\pi -4K_{XX}\Box\pi\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2K_{X}\nabla_{\mu}\nabla^{\mu}\pi\nabla_{\nu}\nabla^{\nu}\pi + 4K_{\pi X}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi +4K_{XX}\nabla_{\rho}\nabla_{\nu}\pi\nabla^{\rho}\nabla_{\mu}\pi\partial^{\mu}\pi\partial^{\nu}\pi + 2K_{X}\nabla^{\mu}\nabla_{\nu}\pi\nabla_{\mu}\nabla^{\nu}\pi + 2K_{X}R_{\mu\nu}\partial^{\mu}\pi\partial^{\nu}\pi = 0.$$

DPSV approach analysis

The Galileon field equation for \mathcal{L}_3 :

$$-4F_{XX}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2F_{X}\Box\pi + 2K_{\pi}\Box\pi - 2K_{\pi X}\Box\pi\partial_{\mu}\pi\partial^{\mu}\pi$$
$$-4K_{XX}\Box\pi\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2K_{X}\nabla_{\mu}\nabla^{\mu}\pi\nabla_{\nu}\nabla^{\nu}\pi + 4K_{\pi X}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi$$
$$+4K_{XX}\nabla_{\rho}\nabla_{\nu}\pi\nabla^{\rho}\nabla_{\mu}\pi\partial^{\mu}\pi\partial^{\nu}\pi + 2K_{X}\nabla^{\mu}\nabla_{\nu}\pi\nabla_{\mu}\nabla^{\nu}\pi + 2K_{X}R_{\mu\nu}\partial^{\mu}\pi\partial^{\nu}\pi = 0.$$

There is a specific set of terms with second derivatives that may in principle arise in the perturbed Galileon equation:

$$\ddot{\chi}, \ \overrightarrow{\nabla}^2 \chi, \ \ddot{\zeta}, \ \overrightarrow{\nabla}^2 \zeta, \ \dot{\alpha}, \ \overrightarrow{\nabla}^2 \beta.$$

DPSV approach analysis

The Galileon field equation for \mathcal{L}_3 :

$$\begin{split} &-4F_{XX}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2F_{X}\Box\pi + 2K_{\pi}\Box\pi - 2K_{\pi X}\Box\pi\partial_{\mu}\pi\partial^{\mu}\pi \\ &-4K_{XX}\Box\pi\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi - 2K_{X}\nabla_{\mu}\nabla^{\mu}\pi\nabla_{\nu}\nabla^{\nu}\pi + 4K_{\pi X}\nabla_{\mu}\nabla_{\nu}\pi\partial^{\mu}\pi\partial^{\nu}\pi \\ &+4K_{XX}\nabla_{\rho}\nabla_{\nu}\pi\nabla^{\rho}\nabla_{\mu}\pi\partial^{\mu}\pi\partial^{\nu}\pi + 2K_{X}\nabla^{\mu}\nabla_{\nu}\pi\nabla_{\mu}\nabla^{\nu}\pi + 2K_{X}R_{\mu\nu}\partial^{\mu}\pi\partial^{\nu}\pi = 0. \end{split}$$

There is a specific set of terms with second derivatives that may in principle arise in the perturbed Galileon equation:

$$\ddot{\chi}, \ \vec{\nabla}^2 \chi, \ \ddot{\zeta}, \ \vec{\nabla}^2 \zeta, \ \dot{\alpha}, \ \vec{\nabla}^2 \beta.$$

The equation has to be invariant under gauge transformations

$$\chi \to \chi + \xi_0 \dot{\pi}, \quad \alpha \to \alpha + \dot{\xi_0}, \quad \beta \to \beta - \xi_0.$$

The equation has to be invariant under gauge transformations

$$\chi \to \chi + \xi_0 \dot{\pi}, \quad \alpha \to \alpha + \xi_0, \quad \beta \to \beta - \xi_0.$$

The only possible gauge invariant combinations of χ , α and β , which are quadratic in derivatives

$$\mathcal{Q}(\ddot{\chi}-\dot{\alpha}\dot{\pi})-\mathcal{P}\left(\overrightarrow{\nabla}^{2}\chi+\overrightarrow{\nabla}^{2}\beta\dot{\pi}\right)=\mathbf{0},$$

where Q and P are expressions with Lagrangian functions (for \mathcal{L}_3 these are F and K).

This is the general form of the Galileon field equation after the trick.

Gauging out $\dot{\alpha}\dot{\pi}$ and $\overrightarrow{\nabla}{}^{2}\beta\dot{\pi}$

lpha and eta in terms of ζ and χ :

$$\begin{aligned} \alpha &= u\dot{\zeta} + v\dot{\chi}, \end{aligned} \tag{7a} \\ \beta &= w\zeta + z\chi, \end{aligned} \tag{7b}$$

where u, v, w and z are some functions.

Gauging out $\dot{\alpha}\dot{\pi}$ and $\overrightarrow{ abla}^2\beta\dot{\pi}$

 α and β in terms of ζ and χ :

$$\begin{aligned} \alpha &= u\dot{\zeta} + v\dot{\chi}, \end{aligned} \tag{7a} \\ \beta &= w\zeta + z\chi, \end{aligned} \tag{7b}$$

where u, v, w and z are some functions.

Let us choose the following gauge fixing condition in the arbitrary form:

$$\beta = w\zeta + z\chi = A\chi,$$

where A = A(t) is some function of t.

Gauging out $\dot{\alpha}\dot{\pi}$ and $\overrightarrow{\nabla}^2\beta\dot{\pi}$

 α and β in terms of ζ and χ :

$$\begin{aligned} \alpha &= u\dot{\zeta} + v\dot{\chi}, \end{aligned} \tag{7a} \\ \beta &= w\zeta + z\chi, \end{aligned} \tag{7b}$$

where u, v, w and z are some functions.

Let us choose the following gauge fixing condition in the arbitrary form:

$$\beta = w\zeta + z\chi = A\chi,$$

where A = A(t) is some function of t. Expressing ζ and α from (7) gives

$$\zeta = \frac{1}{w} (A - z) \chi,$$

$$\alpha = \left(\frac{u}{w} (A - z) + v\right) \dot{\chi}.$$

$$\mathcal{Q}(\ddot{\chi} - \dot{\alpha}\dot{\pi}) - \mathcal{P}\left(\overrightarrow{\nabla}^2 \chi + \overrightarrow{\nabla}^2 \beta \dot{\pi}\right) = 0.$$

$$\mathcal{Q}(\ddot{\chi} - \dot{\alpha}\dot{\pi}) - \mathcal{P}\left(\overrightarrow{\nabla}^2 \chi + \overrightarrow{\nabla}^2 \beta \dot{\pi}\right) = 0.$$

$$\mathcal{Q}\left(\ddot{\chi}-\left(\frac{u}{w}\left(A-z\right)+v\right)\ddot{\chi}\dot{\pi}\right)-\mathcal{P}\left(\overrightarrow{\nabla}^{2}\chi+A\overrightarrow{\nabla}^{2}\chi\dot{\pi}\right)=0.$$

$$\mathcal{Q}\left(\ddot{\chi}-\left(\frac{u}{w}\left(A-z\right)+v\right)\ddot{\chi}\dot{\pi}\right)-\mathcal{P}\left(\overrightarrow{\nabla}^{2}\chi+A\overrightarrow{\nabla}^{2}\chi\dot{\pi}\right)=0.$$

Since gauge invariance of field equations should be preserved modulo field redefinition

$$A=-\frac{u}{w}(A-z)-v.$$

$$\mathcal{Q}\left(\ddot{\chi}-\left(\frac{u}{w}\left(A-z\right)+v\right)\ddot{\chi}\dot{\pi}\right)-\mathcal{P}\left(\overrightarrow{\nabla}^{2}\chi+A\overrightarrow{\nabla}^{2}\chi\dot{\pi}\right)=0.$$

Since gauge invariance of field equations should be preserved modulo field redefinition

$$A=-\frac{u}{w}(A-z)-v.$$

$$\frac{u}{w}=-1, \quad -z-v=0$$

$$\mathcal{Q}\left(\ddot{\chi}-\left(\frac{u}{w}\left(A-z\right)+v\right)\ddot{\chi}\dot{\pi}\right)-\mathcal{P}\left(\overrightarrow{\nabla}^{2}\chi+A\overrightarrow{\nabla}^{2}\chi\dot{\pi}\right)=0.$$

Since gauge invariance of field equations should be preserved modulo field redefinition

$$A=-\frac{u}{w}(A-z)-v.$$

$$\frac{u}{w} = -1, \quad -z - v = 0 \quad \longrightarrow \quad \boxed{\alpha = -\dot{\beta}}$$

$$\alpha = u\dot{\zeta} + v\dot{\chi}$$
 and $\beta = w\zeta + z\chi$.

$$\mathcal{Q}(\ddot{\chi}-\dot{lpha}\dot{\pi})-\mathcal{P}\left(\overrightarrow{
abla}^{2}\chi+\overrightarrow{
abla}^{2}eta\dot{\pi}
ight)=0.$$

Now we can fix the gauge taking A = 0:

$$\beta = w\zeta + z\chi = A\chi \to 0,$$

$$\alpha = -\dot{\beta} \to 0,$$

$$\chi \to \chi - \xi_0 \dot{\pi} \equiv \tilde{\chi}.$$

Now we can fix the gauge taking A = 0:

$$\beta = w\zeta + z\chi = A\chi \to 0,$$

$$\alpha = -\dot{\beta} \to 0,$$

$$\chi \to \chi - \xi_0 \dot{\pi} \equiv \tilde{\chi}.$$

The only degree of freedom that is left is χ .

Gauge invariant action:

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \left[\frac{1}{\dot{\pi}^2} \left(\frac{1}{\kappa^2} \frac{\Sigma}{\Theta^2} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^2 \right. \\ \left. - \frac{1}{\dot{\pi}^2} \left(\frac{1}{a \cdot \kappa^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^2 \right].$$

Gauge invariant action:

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \Bigg[\frac{1}{\dot{\pi}^2} \left(\frac{1}{\kappa^2} \frac{\Sigma}{\Theta^2} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^2 \\ - \frac{1}{\dot{\pi}^2} \left(\frac{1}{a \cdot \kappa^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^2 \Bigg].$$

(a) KYY approach amounts to choosing unitary gauge: $\chi = 0$.

Gauge invariant action:

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \Bigg[\frac{1}{\dot{\pi}^2} \left(\frac{1}{\kappa^2} \frac{\Sigma}{\Theta^2} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^2 \\ - \frac{1}{\dot{\pi}^2} \left(\frac{1}{a \cdot \kappa^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^2 \Bigg].$$

(a) KYY approach amounts to choosing unitary gauge: $\chi = 0$.

(b) To restore the result of DPSV approach one needs to express ζ in terms of χ :

Gauge invariant action:

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \Bigg[\frac{1}{\dot{\pi}^2} \left(\frac{1}{\kappa^2} \frac{\Sigma}{\Theta^2} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^2 \\ - \frac{1}{\dot{\pi}^2} \left(\frac{1}{a \cdot \kappa^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^2 \Bigg].$$

(a) KYY approach amounts to choosing unitary gauge: $\chi = 0$.

(b) To restore the result of DPSV approach one needs to express ζ in terms of χ : $\zeta = Q \cdot \chi$

Gauge invariant action:

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \Bigg[\frac{1}{\dot{\pi}^2} \left(\frac{1}{\kappa^2} \frac{\Sigma}{\Theta^2} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^2 \\ - \frac{1}{\dot{\pi}^2} \left(\frac{1}{a \cdot \kappa^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^2 \Bigg].$$

(a) KYY approach amounts to choosing unitary gauge: $\chi = 0$.

(b) To restore the result of DPSV approach one needs to express ζ in terms of χ :

$$\zeta = Q \cdot \chi$$
$$Q = \kappa K_X \dot{\pi}^2$$

Gauge invariant action:

$$S_{gr+gal}^{(2)} = \int \mathrm{d}t \,\mathrm{d}^3x \,a^3 \Bigg[\frac{1}{\dot{\pi}^2} \left(\frac{1}{\kappa^2} \frac{\Sigma}{\Theta^2} + \frac{3}{\kappa} \right) \left(\frac{\dot{a}}{a} \dot{\chi} - \dot{\zeta} \dot{\pi} \right)^2 \\ - \frac{1}{\dot{\pi}^2} \left(\frac{1}{a \cdot \kappa^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{a}{\Theta} \right] - \frac{1}{\kappa} \right) \left(\frac{\dot{a}}{a} \frac{\overrightarrow{\nabla}\chi}{a} - \frac{\overrightarrow{\nabla}\zeta}{a} \dot{\pi} \right)^2 \Bigg].$$

(a) KYY approach amounts to choosing unitary gauge: $\chi = 0$.

(b) To restore the result of DPSV approach one needs to express ζ in terms of χ :

$$\zeta = Q \cdot \chi$$
$$Q = \kappa K_X \dot{\pi}^2$$

Both methods correspond to choosing a specific gauge in the gauge invariant action.

DPSV trick for \mathcal{L}_4

$$\begin{split} \mathcal{L}_3 &= F(X,\pi) + K(X,\pi) \Box \pi, \\ \mathcal{L}_4 &= -G_4(\pi,X) R + 2G_{4X}(\pi,X) \left[\left(\Box \pi \right)^2 - \nabla_\mu \nabla_\nu \pi \ \nabla^\mu \nabla^\nu \pi \right]. \end{split}$$

DPSV trick for \mathcal{L}_4

$$\begin{split} \mathcal{L}_3 &= \mathcal{F}(X,\pi) + \mathcal{K}(X,\pi) \Box \pi, \\ \mathcal{L}_4 &= -\mathcal{G}_4(\pi,X) \mathcal{R} + 2\mathcal{G}_{4X}(\pi,X) \left[\left(\Box \pi \right)^2 - \nabla_\mu \nabla_\nu \pi \ \nabla^\mu \nabla^\nu \pi \right]. \end{split}$$

Extra terms with second derivatives of metric in the Galileon field equation:

$$\begin{split} & 2R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\pi\;K_{X}+2R\nabla_{\mu}\nabla^{\mu}\pi\;G_{4X}-4R_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\pi\;G_{4X}+\\ & +4R\nabla^{\mu}\pi\nabla_{\mu}\nabla_{\nu}\pi\nabla^{\nu}\pi\;G_{4XX}-16R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\nabla_{\rho}\pi\nabla^{\rho}\pi\;G_{4XX}+\\ & +8R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\pi\nabla_{\rho}\nabla^{\rho}\pi\;G_{4XX}-R\;G_{4\pi}+2R\nabla_{\mu}\pi\nabla^{\mu}\pi\;G_{4\pi X}-\\ & -8R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\pi\;G_{4\pi X}-8R_{\mu\nu\rho\sigma}\nabla^{\mu}\pi\nabla^{\rho}\pi\nabla^{\nu}\nabla^{\sigma}\pi\;G_{4XX}+\cdots=0, \end{split}$$

DPSV trick for \mathcal{L}_4

$$egin{aligned} \mathcal{L}_3 &= \mathcal{F}(X,\pi) + \mathcal{K}(X,\pi) \Box \pi, \ \mathcal{L}_4 &= -\mathcal{G}_4(\pi,X) \mathcal{R} + 2 \mathcal{G}_{4X}(\pi,X) \left[\left(\Box \pi
ight)^2 -
abla_\mu
abla_
u \pi \,
abla^
u \pi \,
ab$$

Extra terms with second derivatives of metric in the Galileon field equation:

$$\begin{split} & 2R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\pi\;K_{X}+2R\nabla_{\mu}\nabla^{\mu}\pi\;G_{4X}-4R_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\pi\;G_{4X}+\\ & +4R\nabla^{\mu}\pi\nabla_{\mu}\nabla_{\nu}\pi\nabla^{\nu}\pi\;G_{4XX}-16R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\nabla_{\rho}\pi\nabla^{\rho}\pi\;G_{4XX}+\\ & +8R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\pi\nabla_{\rho}\nabla^{\rho}\pi\;G_{4XX}-R\;G_{4\pi}+2R\nabla_{\mu}\pi\nabla^{\mu}\pi\;G_{4\pi X}-\\ & -8R_{\mu\nu}\nabla^{\mu}\pi\nabla^{\nu}\pi\;G_{4\pi X}-8R_{\mu\nu\rho\sigma}\nabla^{\mu}\pi\nabla^{\rho}\pi\nabla^{\nu}\nabla^{\sigma}\pi\;G_{4XX}+\cdots=0, \end{split}$$

and Einstein equations

$$2G_{\mu\nu} G_4 + 2R\nabla_{\mu}\pi\nabla_{\nu}\pi G_{4X} - 4R_{\nu\rho}\nabla_{\mu}\pi\nabla^{\rho}\pi G_{4X} - -4R_{\mu\rho}\nabla_{\nu}\pi\nabla^{\rho}\pi G_{4X} + 4g_{\mu\nu}R_{\rho\sigma}\nabla^{\rho}\pi\nabla^{\sigma}\pi G_{4X} - -4R_{\mu\rho\nu\sigma}\nabla^{\rho}\pi\nabla^{\sigma}\pi G_{4X} + \cdots = 0.$$

Conclusion

1. Both KYY and DPSV approach correspond to a specific gauge choice.

Conclusion

- 1. Both KYY and DPSV approach correspond to a specific gauge choice.
- 2. If DPSV trick works, inevitably $\alpha = -\dot{\beta}$.

Conclusion

- 1. Both KYY and DPSV approach correspond to a specific gauge choice.
- 2. If DPSV trick works, inevitably $\alpha = -\dot{\beta}$.
- 3. DPSV trick applies to \mathcal{L}_4 case.

Thank you for your attention!