COLLIDER SEARCHES FOR DARK MATTER

YORAM ROZEN TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY N BEHALF OF THE ATLAS AND CMS COLLABORATIONS

DM evidence

DM Search Methods

EFT -> Simplified Models

https://arxiv.org/abs/1507.00966

- 4 point interaction
- Valid if mediator mass much larger than momentum
 - Used for RUN1 but generally breaks at the LHC

Simplified models:

• Keep mediator information:

mass, spin, coupling

- Can be a starting point to build a complete theory
 - Colliders can search directly for the mediator
 - Benchmark model for LHC RunII

$$\mathcal{L}_{\text{vector}} = g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

$$\mathcal{L}_{\text{axial-vector}} = g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma^{5} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi$$

LHC Search Strategy

LHC Status

Peak luminosity > $1.35 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ about 40 fb⁻¹ in both ATLAS and CMS

A OK ENGINE STORY

2017: beams are back in LHC from Friday 29th April

ATLAS

Plans: 45 fb⁻¹@13TeV

Coverage of LHC measurements

Mono X

- Pair produced DM via massive mediator (scalar, pseudo- scalar, vector, axial-vector)
- X = visible particle to tag the DM: jet, photon, W/Z, Higgs, dijet (sometimes under associate production category)

Mono - jet

Mono Higgs (bb)

DM couples to Higgs in many models

(e.g. Z' vector mediator, leptophobic model)

Probing the Higgs coupling to the mediator

H→bb (as it is the largest Br)

Two scenarios:

- 1. High MET (>500 GeV) → merged b-jets
- 2. Low MET (<500 GeV) → two resolved b-jets

Background estimation: Data driven leptonic/b-tagged CRs

Mono Higgs (bb)

A similar analysis by CMS (CMS-EXO-16-012; CERN-EP-2017-027)

Mono Higgs $(\gamma\gamma)$

Similarly but using a cleaner mode H $\rightarrow \gamma \gamma$

Mono - jet

Mono - jet

- With $g_q = 0.25$, $g_{DM} = 1.0$
- Current constraints:
- DM mass~600GeV
- mediator mass~2TeV

Similar results from ATLAS: ATLAS-CONF-2017-060 arXiv:1707.03263

Mono - Jet Z(II)

- Similar physics $Z \rightarrow II$ (rather than qq)
- Lepton pair + MET
- Background: mostly $ZZ \rightarrow II\nu\nu$

ATLAS-CONF-2016-056

Mono - Z(II)

using simplified models with vector mediator for DM production

ATLAS-CONF-2016-056

CMS-PAS-EXO-16-038

Mono - photon

Smaller XS and Bkg than mono-jet

Selection: Photon+ MET

Main Bkg: $Z(\nu\nu)+\gamma$

Bkg estimation: CR with leptons

Eur. Phys. J. C 77 (2017) 393

Similar analysis by CMS (13 fb⁻¹): CMS-PAS-EXO 16-039

DM+HF (Associate production)

b(t)

Sensitive to scalar and pseudo-scalar interaction Favored if Yukawa like coupling

ATLAS DM+bb

CMS DM+t (boosted) [CMS-PAS-EXO-051]

ATLAS DM+tt

3 channels forth decays Full had (0-lep) Full lep (2-lep) Mixed (1-lep)

tt environment→ background mostly from tt events; V+jets (channel dependent)

Estimation using data driven techniques in control regions

1 lepton analysis ATLAS-CONF-2017-037

Scalar and PseudoScalar mediator Only sensitive to low mediator mass

ATLAS DM+tt

Mono X Results from the LHC

"X"	Expt	Run 1 (20 fb-1 @8TeV)	Run 2 (36 fb-1 @13TeV)
≥1 jet	ATLAS CMS	EPJC 75 (2015) 299 EPJC 75 (2015) 235	ATLAS-CONF-2017-060 CMS-PAS-EXO-16-048
≥2jet	CMS	JHEP 12 (2016) 088	
Photon	ATLAS CMS	PRD 91 (2015) 012008 PLB 755 (2016) 192	arXiv:1704.03848 CMS-PAS-EXO-16-039
W(Ι ν)	ATLAS CMS	JHEP 09 (2014) 037 PRD 91 (2015) 092005	
Z(II)	ATLAS CMS	PRD 90 (2014) 012004 PRD 93 (2016) 052011	ATLAS-CONF-2016-056 CMS-PAS-EXO-16-052
W,Z (qq)	ATLAS CMS	PRL112 (2014) 041802 JHEP 12 (2016) 083	Phys. Lett. B 763 (2016) 251 CMS-PAS-EXO-16-037
H(bb)	ATLAS CMS	PRD 93 (2016) 072007	arXiv:1707.01302 CMS-PAS-EXO-16-012
Η(γγ)	ATLAS CMS	PRL115 (2015) 131801	arXiv:1706.03948 CMS-PAS-EXO-16-054
tt or t	CMS	JHEP 06 (2015) 121	ATLAS-CONF-2016-077(076) CMS-PAS-EXO-16-051
bb	CMS		ATLAS-CONF-2016-086 CMS-PAS-B2G-15-017
t/b jet	ATLAS CMS	EPJC 75 (2015) 92 23	CMS-PAS-EXO-16-005

Mediator search

Mediator search

Similar analyses by CMS

CMS-PAS-EXO-16-056

CMS-PAS-EXO-16-030

Summary of searches

Shown for one common set of coupling but limits are strongly dependent on choice of coupling

Conclusion

- Extensive search for DM at the LHC
- complementary to direct searches
- No excess over the SM was found but the results are interpreted as exclusion limits in the framework of simplified models and effective field theories.