Dipole model analysis of HERA data and investigation of exclusive $J/\psi, \rho, \phi$ production at the LHC

Agnieszka Łuszczak

Krakow University of Technology and DESY Hamburg

in collaboration with Henri Kowalski (DESY) and Sasha Glazov (DESY)

published in Phys.Rev.D95, 2017

ICNFP 2017 conference, 17-29 August 2017, Crete, Greece

This work is supported by the Polish Ministry under program Mobilosc Plus, no. 1320/MOB/IV/2015/0.
Introduction

Motivation: We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low x region, using fully correlated errors.

We show, that these highest precision data are very well described within the dipole model framework starting from very low Q^2 values of 0.3 GeV^2 to the highest values of $Q^2 = 250 \text{ GeV}^2$.

We discuss the saturation question and the properties of the gluon density obtained in this way.

We discuss exclusive production for $J/\psi, \rho, \phi$ at the HERA and LHC.

The analysis was done in the xFitter framework.
Outline

- Dipole model approach.
- Results of the fits from BGK dipole model.
- Gluon density.
- Comparison with HERA data.
- Color dipole formulas for diffractive processes.
- Exclusive production for J/ψ, ρ, ϕ at the HERA and LHC.
- Summary.
Dipole model of DIS

- Dipole picture of DIS at small x in the proton rest frame

\[r \text{ - dipole size} \]
\[z \text{ - longitudinal momentum fraction of the quark/antiquark} \]

- Factorization: dipole formation + dipole interaction

\[
\sigma_{\gamma p} = \frac{4\pi^2\alpha_{em}}{Q^2} F_2 = \sum_f \int d^2r \int_0^1 dz \left| \Psi_{\gamma}(r, z, Q^2, m_f) \right|^2 \hat{\sigma}(r, x)
\]

- Dipole-proton interaction

\[
\hat{\sigma}(r, x) = \sigma_0 \left(1 - \exp\{-\hat{r}^2\}\right) \quad \hat{r} = \frac{r}{R_s(x)}
\]
Dipole cross section

- BGK (Bartels-Golec-Kowalski) parametrization

\[\hat{\sigma}(r, x) = \sigma_0 \left\{ 1 - \exp \left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x, \mu^2) / (3\sigma_0) \right] \right\} \]

- \(\mu^2 = C/r^2 + \mu_0^2 \) is the scale of the gluon density

- \(\mu_0^2 \) is a starting scale of the QCD evolution. \(\mu_0^2 = Q_0^2 \)

- gluon density is evolved according to the LO or NLO DGLAP eq.

 soft gluon:
 \[x g(x, \mu_0^2) = A_g x^{\lambda_g} (1 - x)^{C_g} \]

 soft + hard gluon:
 \[x g(x, \mu_0^2) = A_g x^{\lambda_g} (1 - x)^{C_g} \left(1 + D_g x + E_g x^2 \right) \]
Results of the Fits

Dipole model BGK fit with fix valence quarks and without

<table>
<thead>
<tr>
<th>Q^2_{min} [GeV2]</th>
<th>σ_0 [mb]</th>
<th>A_g</th>
<th>λ_g</th>
<th>C_g</th>
<th>N_{df}</th>
<th>χ^2</th>
<th>χ^2/N_{df}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>87.0±</td>
<td>2.32±</td>
<td>-0.056±</td>
<td>8.21±</td>
<td>534</td>
<td>551.05</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>8.9</td>
<td>0.009</td>
<td>0.11</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>72.36±</td>
<td>2.766±</td>
<td>-0.042±</td>
<td>6.543±</td>
<td>448</td>
<td>452.48</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>0.009</td>
<td>0.123</td>
<td>0.632</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: BGK fit with fixed valence quarks for σ_r for H1ZEUS-NC data in the range $Q^2 \geq 3.5$ or 8.5 GeV2 and $x \leq 0.01$. NLO fit. Soft gluon. $m_{uds} = 0.14, m_c = 1.3$ GeV. $Q^2_0 = 1.9$ GeV2.

1.2 BGK NLO fit without valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-Ncem in the range $Q^2 \geq 3.5$ GeV2 and $Q^2 \geq 8.5$ and $x \leq 0.01$. Soft gluon.

<table>
<thead>
<tr>
<th>No</th>
<th>Q^2</th>
<th>HF Scheme</th>
<th>σ_0</th>
<th>A_g</th>
<th>λ_g</th>
<th>C_g</th>
<th>$cBGK$</th>
<th>N_p</th>
<th>χ^2</th>
<th>χ^2/N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Q^2 \geq 3.5$</td>
<td>RT OPT</td>
<td>85.111</td>
<td>2.075</td>
<td>-0.093</td>
<td>4.989</td>
<td>4.0</td>
<td>568</td>
<td>592.46</td>
<td>1.04</td>
</tr>
<tr>
<td>2</td>
<td>$Q^2 \geq 8.5$</td>
<td>RT OPT</td>
<td>123.31</td>
<td>1.997</td>
<td>-0.0975</td>
<td>4.655</td>
<td>4.0</td>
<td>482</td>
<td>479.37</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Results of the Fits

- **Dipole model BGK fit with fitted valence quarks**

 1.3 **BGK NLO fit with fitted valence quarks** for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range $Q^2 \geq 3.5$ GeV2 and $Q^2 \geq 8.5$ and $x \leq 0.01$.

 Soft gluon.

<table>
<thead>
<tr>
<th>No</th>
<th>Q^2</th>
<th>HF Scheme</th>
<th>σ_0</th>
<th>A_g</th>
<th>λ_g</th>
<th>C_g</th>
<th>cBGK</th>
<th>N_p</th>
<th>χ^2</th>
<th>χ^2/N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Q^2 \geq 3.5$</td>
<td>RT OPT</td>
<td>85.111</td>
<td>1.921</td>
<td>-0.103</td>
<td>4.674</td>
<td>4.0</td>
<td>557</td>
<td>575.30</td>
<td>1.03</td>
</tr>
<tr>
<td>2</td>
<td>$Q^2 \geq 8.5$</td>
<td>RT OPT</td>
<td>93.581</td>
<td>1.665</td>
<td>-0.124</td>
<td>6.066</td>
<td>4.0</td>
<td>473</td>
<td>476.71</td>
<td>1.01</td>
</tr>
</tbody>
</table>

- **HERAPDF fit with fitted valence quarks**

 1.4 **HERAPDF NLO fit with fitted valence quarks** for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem, HERA1+2-CCep and HERA1+2-CCem data in the range $Q^2 \geq 3.5$ and $Q^2 \geq 8.5$ and $x \leq 1.0$.

<table>
<thead>
<tr>
<th>No</th>
<th>Q^2</th>
<th>HF Scheme</th>
<th>N_p</th>
<th>χ^2</th>
<th>χ^2/N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Q^2 \geq 3.5$</td>
<td>RT</td>
<td>1131</td>
<td>1356.70</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>$Q^2 \geq 8.5$</td>
<td>RT</td>
<td>456</td>
<td>470.88</td>
<td>1.15</td>
</tr>
</tbody>
</table>
Results of the Fits

- HERAPDF fit with fix valence quarks, soft gluon

HERAPDF NLO fit with fix valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem data in the range $Q^2 \geq 3.5$ and $x \leq 0.01$.

<table>
<thead>
<tr>
<th>No</th>
<th>Q^2</th>
<th>HF Scheme</th>
<th>N_p</th>
<th>χ^2</th>
<th>χ^2/N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Q^2 \geq 3.5$</td>
<td>RT</td>
<td>534</td>
<td>572.69</td>
<td>1.07</td>
</tr>
</tbody>
</table>

- HERAPDF fit with fix valence quarks, soft + hard gluon

HERAPDF NLO fit with fix valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem data in the range $Q^2 \geq 3.5$ and $x \leq 0.01$.

<table>
<thead>
<tr>
<th>No</th>
<th>Q^2</th>
<th>HF Scheme</th>
<th>N_p</th>
<th>χ^2</th>
<th>χ^2/N_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Q^2 \geq 3.5$</td>
<td>RT</td>
<td>532</td>
<td>564.80</td>
<td>1.06</td>
</tr>
</tbody>
</table>
Results of the Fits

- \(m_{u,d,s} = 140 \text{ MeV}, \ m_c = 1.3 \text{ GeV} \)

- \(\hat{\sigma}(r, x) = \sigma_0 \left\{ 1 - \exp \left[-\pi^2 r^2 \alpha_s(\mu^2)xg(x, \mu^2)/(3\sigma_0) \right] \right\} \) with saturation

<table>
<thead>
<tr>
<th>(Q^2_{\text{min}}) [GeV^2]</th>
<th>(\sigma_0) [mb]</th>
<th>(A_g)</th>
<th>(\lambda_g)</th>
<th>(C_g)</th>
<th>(D_g)</th>
<th>(E_g)</th>
<th>(N_{df})</th>
<th>(\chi^2)</th>
<th>(\chi^2/N_{df})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>77.6(\pm)18.6</td>
<td>2.6166(\pm)0.158</td>
<td>-0.0636(\pm)0.0087</td>
<td>37.114(\pm)5.057</td>
<td>3.0597(\pm)6.510</td>
<td>1406.4(\pm)552.65</td>
<td>532</td>
<td>534.17</td>
<td>1.00</td>
</tr>
<tr>
<td>8.5</td>
<td>63.5(\pm)18.5</td>
<td>2.112(\pm)0.101</td>
<td>-0.0541(\pm)0.0065</td>
<td>21.341(\pm)4.062</td>
<td>1.098(\pm)5.764</td>
<td>867.23(\pm)423.67</td>
<td>448</td>
<td>439.04</td>
<td>0.98</td>
</tr>
</tbody>
</table>

- \(\hat{\sigma}(r, x) = \sigma_0 \left[\pi^2 r^2 \alpha_s(\mu^2)xg(x, \mu^2)/(3\sigma_0) \right] \) without saturation

<table>
<thead>
<tr>
<th>(Q^2_{\text{min}}) [GeV^2]</th>
<th>(A_g)</th>
<th>(\lambda_g)</th>
<th>(C_g)</th>
<th>(D_g)</th>
<th>(E_g)</th>
<th>(N_{df})</th>
<th>(\chi^2)</th>
<th>(\chi^2/N_{df})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2.3313(\pm)0.100</td>
<td>-0.0936(\pm)0.0056</td>
<td>14.762(\pm)11.546</td>
<td>9.802(\pm)14.668</td>
<td>-99.503(\pm)74.830</td>
<td>533</td>
<td>556.17</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Gluon density

\[Q^2 = 1.9 \text{ GeV}^2 \]
\[Q^2 = 4 \text{ GeV}^2 \]
\[Q^2 = 10 \text{ GeV}^2 \]
\[Q^2 = 100 \text{ GeV}^2 \]
\[Q^2 = 1000 \text{ GeV}^2 \]
\[Q^2 = 10000 \text{ GeV}^2 \]
Gluon density

The differences are disappearing at larger Q^2.

Dipole model analysis of HERA data and Vector Mesons 11/24
Comparision with HERAI+II data

Dipole model analysis of HERA data and Vector Mesons
Comparision with HERAI+II data

![Graph showing dipole model analysis of HERA data and vector mesons](image)
Color dipole formulas for diffractive processes

- Up to now we have determined the dipole cross section from the total photoabsorption cross section/proton structure function.
- The same dipole cross section enters also the forward amplitude for the diffractive process $\gamma^* p \rightarrow V p$:
- For heavy quarkonia, like $J/\psi, \psi', \Upsilon$, the large quark mass ensures that small dipoles of size dominate.

$$r \sim r_S \approx \frac{6}{\sqrt{Q^2 + M_V^2}}$$

- for small dipoles the dipole cross section is related to the gluon density of the proton:

$$\sigma(x, r) = \frac{\pi^2}{3} r^2 \alpha_S(q^2) x g(x, q^2), \quad q^2 \approx \frac{10}{r^2}$$
Color dipole formulas for diffractive processes

Cross sections in the color dipole approach:

\[
\sigma_{\text{tot}}(\gamma^* p) = \int_0^1 dz \int d^2r |\psi_{q\bar{q}}(z, r)|^2 \sigma(x, r)
\]

\[
\frac{d\sigma(\gamma^* p \rightarrow V p; t = 0)}{dt} = \frac{1}{16\pi} \left| \int_0^1 dz d^2r \psi_V^*(z, r) \psi_{q\bar{q}}(z, r) \sigma(x, r) \right|^2
\]

Color dipoles: the nuclear target
For the case of the nuclear target, we have to take into account multiple scatterings of the color dipole.

Nuclear cross section in the color dipole approach:

\[
\sigma_A(x, r) = 2 \int d^2 b \Gamma_A(b, x, r) = 2 \int d^2 b (1 - \exp[-\frac{1}{2} \sigma(x, r) T_A(b)])
\]

together with the light-cone wavefunctions of photon and vector meson that is all the input we need to evaluate observables for DIS or diffractive vector meson production on nuclear targets.

Similarly, one can calculate incoherent diffraction on a nucleus (with nuclear breakup).
Exclusive J/ψ production

- J/ψ cross-sections grows almost like $\sigma \propto (xg(x, \mu^2))^2$

- The determination of gluon density with J/ψ would be more precise than by $F2$ or FL if J/ψ measurements would have small systematic errors
Total vector Meson (VM) cross sections from dipole model

- Predictions from b-Sat and b-CGC models for vector mesons

A.Caldwell, H.Kowalski, Phys.Rev.C81, 2010

- These are absolute predictions obtained from the gluon density determined from F2
Dipole model with the DGLAP evolution of gluon density predicts well the rise with W of the ρ and ϕ VM cross sections.
HERA - F_2 is dominated by the gluon density at low x.

The same universal gluon density describes different interactions: $\gamma^* p \rightarrow X$, $\gamma^* p \rightarrow J/\psi p$, $\gamma^* p \rightarrow \rho p$.

The universal rate of rise of all hadronic x-sections is given by $\sigma_{\gamma p \rightarrow X} \sim W^{2\lambda}$ and $\sigma_{\gamma p \rightarrow J/\psi p} \sim W^\delta$.

Dipole model analysis of HERA data and Vector Mesons
Summary I

- BGK dipole fits (with saturation) describe the final, high precision HERA data with $x < 0.01$, very well: $\chi^2/N_p \to 1$.

- Little sensitivity to valence quarks contribution observed.

- Gluon density from the dipole models is higher than the PDFs gluon at low Q^2.

- The extrapolation to the very low Q^2 region shows a sizable overshoot. This indicates that at very low Q^2 saturation effects of the eikonal approximation are too small.

- The fit in the whole Q^2 region, $0.3 < Q^2 < 250$ GeV2 is only slightly better than in the extrapolated case. The systematic overshoot of the fits over data remains.

- The χ^2/N_{df} in the region: $0.3 < Q^2 < 250$ GeV2 is sizably higher than in the fits in the region $3.5 < Q^2 < 250$ GeV2, $\chi^2/N_{df} = 1.21$, with the saturation ansatz and $\chi^2/N_{df} = 1.52$ without the saturation ansatz.

- In the lower $Q^2 < 3.5$ GeV2 range the saturated ansatz of the gluon density seems to be prefered.
Dipole model b-Sat can be used to investigate the gluonic structure of nuclei via \(J/\psi \) scattering.

Predictions for the exclusive \(J/\psi \) and \(\rho \) at HERA will be provided using dipole model.

The data indicate that the transverse gluon shape observed in the various exclusive processes is compatible with the same proton-gluon distribution, i.e. it is independent of a specific projectile, \(J/\psi \), \(\rho \) or \(\phi \).

Using the gained experience in first point in the next step we planned to extend our studies to nuclei.

Predictions for the exclusive \(J/\psi \) and \(\rho \) at RHIC and LHC data on heavy ion-ion and heavy ion-proton scattering are investigated.

The above experiments observe the diffractive, exclusive \(J/\psi \) and \(\rho \) production, which is described by a very similar dipole formation as in the electro-production at HERA.
Summary II

The main properties of a nucleus, like radius and skin depth, are known from e.g. the low energy electoproduction. However, these properties, measured in low energy experiments, reflect the charge structure of nuclei, whereas the high energy experiments at RHIC and the LHC will reveal the gluonic structures.
Dipole scattering amplitude with GBW parametrization

- GBW parametrization with heavy quarks \(f = u, d, s, c \)

\[
\hat{\sigma}(r, x) = \sigma_0 \left(1 - \exp\left(-\frac{r^2}{R_s^2}\right) \right), \quad R_s^2 = 4 \cdot (x/x_0)^\lambda \text{ GeV}^2
\]

- The dipole scattering amplitude in such a case reads

\[
\hat{N}(r, b, x) = \theta(b_0 - b) \left(1 - \exp\left(-\frac{r^2}{R_s^2}\right) \right)
\]

where

\[
\hat{\sigma}(r, x) = 2 \int d^2b \hat{N}(r, b, x)
\]

- Parameters \(b_0, x_0 \) and \(\lambda \) from fits of \(\hat{N} \) to \(F_2 \) data

\[
\lambda = 0.288 \quad \quad x_0 = 4 \cdot 10^{-5} \quad \quad 2\pi b_0^2 = \sigma_0 = 29 \text{ mb}
\]