

KamLAND-Zen 800 status and future prospects

Masayuki Koga @ RCNS Tohoku University KAVLI IPMU

> 2017 ICNFP @AOC 22 August 2017

KamLAND experiment on $\overline{v_e}$

Ultra low radioactivity: U: $<3.5 \times 10^{-18}$ g/g,

- Large volume: 1,200m³ Liquid Scintillator

Depth: 2,700 m.w.e. t =2.5m paraffin shield Acrylic plate for Rn 3.8kL pure-water OD veto Masayuki Koga

for Geo neutrino

Livetime : 1259.8 days 2016 Preliminary Result

model prediction : Enomoto et al. EPSL 258, 147 (2007)

Masayuki Koga

Why neutrino less double beta decay?

- Neutrino
 - 3 generation
 - Oscillation: $m_{\nu} \neq 0$, so small (why?)
 - Only Left-handed Neutrino (right-handed anti-neutrino).
 where is right-handed ?
- Majorana Mass : Neutrino don't have charge

 $\mathcal{L}_{M} = m_{D}(\bar{\psi}_{L}^{c}\psi_{R}^{c} + \bar{\psi}_{R}^{c}\psi_{L}^{c}) + m_{L}(\bar{\psi}_{L}(\psi_{L})^{c} + (\bar{\psi}_{L})^{c}\psi_{L}) + m_{R}\left((\bar{\psi}_{R})^{c}\psi_{R} + \bar{\psi}_{R}(\psi_{R})^{c}\right)$

$$\mathcal{L}_{mass} = \mathcal{L}_D + \mathcal{L}_M = \mathcal{L}_D + \mathcal{L}_L + \mathcal{L}_R$$

Violates lepton number !

• Heavy right-handed neutrino ? See-saw: (Yanagida, Gell-Mann...)

Double beta decay isotope and $0v\beta\beta$

G: phase space factor, M: nuclear matrix element <m_v>: effective neutrino mass

$$\langle m_{\nu} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$

Double beta decay

- \rightarrow very long life >10¹⁸ yr
- \rightarrow Large amount isotope High ΔE

isotope	Q-Value(MeV)	abundance(%)
$^{48}Ca \rightarrow ^{48}Ti$	4.271	0.187
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2.040	7.8
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	2.995	9.6
${}^{96}\text{Zr} \rightarrow {}^{96}\text{Mo}$	3.350	2.8
$^{100}Mo \rightarrow ^{100}Ru$	3.034	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn → ¹²⁴ Te	2.228	5.64
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.533	34.5
136 Xe $\rightarrow ^{136}$ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6
* Q>2MeV isoto	ope	

S.R.Elliot and P.Vogel, Ann. Rev.Nucl.Part.Sci.52(2002)115.

Masayuki Koga

ICNFP2017

Effective Majorana neutrino mass and hierarchy

$$|\langle m_{\nu} \rangle| = |\sum U_{e_i}^2 m_i| = |\cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13}|$$

$$\langle m_{ee} \rangle^{\text{nor}} = \left| m_1 c_{12}^2 c_{13}^2 + \sqrt{m_1^2 + \Delta m_{\odot}^2} s_{12}^2 c_{13}^2 e^{2i\alpha} + \sqrt{m_1^2 + \Delta m_A^2} s_{13}^2 e^{2i\beta} \right|$$
$$\langle m_{ee} \rangle^{\text{inv}} = \left| \sqrt{m_3^2 + \Delta m_A^2} c_{12}^2 c_{13}^2 + \sqrt{m_3^2 + \Delta m_{\odot}^2} + \Delta m_A^2 s_{12}^2 c_{13}^2 e^{2i\alpha} + m_3 s_{13}^2 e^{2i\beta} \right|$$

S. M. Bilenky, arXiv:1203.5250

ICNFP2017

Motivation of KamLAND-Zen for $\beta\beta$

• KamLAND

Large volume: 1,200m³ Liquid Scintillator as a 4pi veto Ultra low radioactivity: U:<3.5x10⁻¹⁸g/g, Th<5.2x10⁻¹⁷g/g Distillation technique Experience of balloon development New electronics MoGRA (available¹⁰C,¹¹C tagging) Detector is running. => quick start by low cost. mach advantage for ββ experiment !

• Disadvantage

KamLAND Energy Resolution:

$$\Delta E = \frac{6.2\%}{\sqrt{E(MeV)}}$$
 (34% photo coverage)

Merits of ¹³⁶Xe on KamLAND

Before EXO-200 and KamLAND-Zen start

isotope	T ^{0v} _{1/2} (50 meV)	_{1/2} (50 meV) T ^{2v} _{1/2} measured		Q-value
		(year)	(%)	(keV)
¹³⁶ Xe→ ¹³⁶ Ba	4.55 × 10 ²⁶	>10 ²²	8.9	2476

Rodin et al., Nucl. Phys. A793 (2007)213-215

$0\nu\beta\beta$ (FWHM = 5% @ $Q_{\beta\beta}$) Merits on KamLAND (normalized to 10⁻⁴) Isotopic enrichment 30 2.0 ° 20 20 purification established • 1.5solubility to LS > 3%, easy extracted ۲ 0.90 1.00 1.10 K_/Q slow $2\nu\beta\beta$ ($T^{2\nu}_{1/2}$ >10²² years) 1.0-• Qvββ (FWHM = 5% @ Q_{ββ}) small T^{0v}/ T^{2v} ratio 2vββ (normalized to 10^{-2}) 0.5-(normalized to 1) 0.0

0.0

0.2

0.4

0.6

Kୁ∕Q

0.8

1.0

KamLAND-Zen project

1325 17inch PMT +554 20inch PMT

KamLAND-Zen collaboration

Tohoku University

Kavli IPMU Tokyo University

Osaka University

Tokushima University

University of California Berkeley

LBNL

Colorado State University

University of Tennessee

TUNL

University of Washington

MIT

University of Hawaii

NIKHEF and University of Amsterdam

1st phase

¹³⁶Xe ~320kg (91% enriched) R=1.54m balloon

V=16.5m³

LS : C10H22(81.8%) + PC(18%) + PPO + Xe(~3wt%)

ρLS: 0.78kg∕ℓ

target : ~60meV / 2years for $0\nu\beta\beta$

KamLAND-Zen MIB (Zen Balloon)

Sphere diameter	3.16m
volume	17m ³
Film thickness	25µm
Film strength	3kg/cm
Connection part strength	2kg/cm
Xe leakage	<1.3kg/5years
Transparency (@400nm)	99%
U contamination	2x10 ⁻¹² g/g
Th contamination	3x10 ⁻¹² g/g

filling test by water

Real balloon construction in the ultra clean room (crass 1)

Ultra-sonic cleaning using pure water

He leak test & Repair work

Before shipping

Masayuki Koga

Installation of KamLAND-Zen mini balloon

Masayuki Koga

Making Xe loaded LS

LED and CCD Camera

top View (in the chimney)

Corrugate tube

Black sheet

Inside of KamLAND

Normal data taking has been started on 24 September 2011

Masayuki Koga

Background study around Q-value

Masayuki Koga

ICNFP2017

KamLAND-Zen phase-1 result

2.2MeV < E < 3.0MeV

KamLAND-Zen

 $T_{1/2}^{0v}$ > 1.9x10⁻²⁵ yr @90%CL

Phys.Rev.Lett.110:062502,2013.

^{110m}Ag BG reduction

KamLAND-Zen 400 phase-2 calibration

Z-axis calibration with composite source (137Cs 68Ge 60Co)

Masayuki Koga

ICNFP2017

KamLAND-Zen 400 phase-2 BG

KamLAND-Zen 400 phase-2

Masayuki Koga

KamLAND-Zen 400 phase 1+2

Phys.Rev.Lett. 117 (2016)

Recent 0vββ Summary (form TAUP2017)

- EXO : ¹³⁶Xe
 - New EXO-200 data results show no statistically significant 0vββ excess
 - $T_{1/2} > 1.8 \times 10^{25}$ yr (90% CL), $\langle m_{\beta\beta} \rangle < 147 398$ meV On-going EXO-200 Phase-II running will continue to improve sensitivity
- GERDA: ⁷⁶Ge Preliminary <u>11:30 24th Aug GUSEV, Konstantin</u> Unblinding of 12.4 kg•yr of best-quality data
 - $T_{1/2} > 8.0 \times 10^{25} \text{ yr} @ 90\% \text{ CL}, m_{\beta\beta} < 0.12-0.27 \text{ eV}$
 - For full 100 kg•yr exposure: sensitivity to a signal up to $T_{1/2} > 8.0 \times 10^{25}$ yr (or limit $T_{1/2} > 1.3 \times 10^{26}$ yr at 90%CL)

Recent 0vββ Summary (form TAUP2017)

- CUORE : ¹³⁰Te Bolometers
 - combined result with

19.75kg•yr of Cuoricino and 9.8kg•yr of CUORE-0

• The combined 90% C.L. limit is

 $T_{0v} > 6.6 \times 10^{24} \text{ yr}, \quad m_{\beta\beta} < 210-590 \text{ meV}$

- SNO+: ¹³⁰Te Loaded LS
 - LAB+PPO+Te-ButaneDiol Cocktail : 0.5% Te (~1300 kg ¹³⁰Te)
 - Commissioning Ongoing, Filling with Scintillator later this year
 - Sensitivity: $T_{1/2} > 2 \times 10^{26}$ y, 90% CL, $m_{\beta\beta} \approx 40 90$ meV (after 5 yrs, 0.5% loading)
- Others: Se (SuperNEMO, CUPID-0), Mo (CUPID-Mo, AMoRE Ge (MJD, LEGEND), gas-Xe (NEXT, PandaX-III), Ca (CANDLES),

KamLAND-Zen 400 removal

2013

2014

- 1. Xe extraction from LS
- 2. LS draining from inner balloon

2012

- 3. Inner balloon removal
- 4. Close top flange

2011

CNFP2017

20

10 12

2016

KamLAND-Zen 800

Motivation:

KamLAND need spherical tank inspection under the flammable liquid law. (~May 2016, every 16 years) So, we need to drain OD water.

- Good chance to improve Zen mini-balloon and OD!
- We kept extra ¹³⁶Xe in the mine. (>2years)

	KL-zen 4	400	KL-zen 800		
balloon size :	3.16mφ	=>	~ 4mφ		
¹³⁶ Xe amount :	383kg	=>	756kg		
enlarge FV using ultra clean balloon					

=> establish more cleaner production technique

(particle and electro static Ctrl., screening, etc....)

Original Schedule for KamLAND-Zen 800

Deployed MIB with LS from September 2016

Masayuki Koga

ICNFP2017

new mini-balloon production (June 2015~2016) in class-1 ultra clean room, Sendai

Masayuki Koga

KamLAND-Zen 800 status

- New MIB was installed in August, and LS was filled.
- lower Th/U concentration
 But,....
- We found a leakage from MIB

²¹⁰Po events

upper hemisphere

KamLAND-Zen 800 status

- Removed 800 MIB was checked carefully.
- Five small holes were found.
- Film didn't break but welding line broke.
- Welding from top as done for the first 400 MIB which didn't break.
 - 400 MIB: handy tool, from bottom
 - 800 MIB: machine , from top
- Welding parameter was scanned again.
- Review to JP and US balloon experts. (April 2017)
- Customize welding machine and method.
- New MIB production will be finished in September.
- Retrial for new MIB installation will be in October.

KamLAND-Zen & KamLAND-Zen 800 sensitivity

Future prospects on KamLAND

KamLAND2-Zen 1000kg ¹³⁶Xe phase

Energy resolution at 2.6MeV $4\% \rightarrow 2\%$ Winston cone • light correction by WC $\times 1.8$ • High light emission LS $\times 1.4$ • High Q.E. 20"PMT or HPD (QE ~22% \rightarrow >30%, 17" \rightarrow 20") $\times 1.9$

Dead layer free scintillation film balloon

New electronics and trigger

Target sensitivity ~20meV by 5years Cover inverted hierarchy region !

Other future option on KamLAND

summary

- KamLAND-Zen 400 phase-2 was ended.
- Recent $0\nu\beta\beta$ decay result KamLAND-Zen combined (phase-1 + phase-2) $T^{0\nu}_{1/2} > 1.07 \times 10^{26}$ yr (90%C.L.) corresponding to $\langle m_{\beta\beta} \rangle < 61-165$ meV.
- KamLAND-Zen 800 MIB was installed in August 2016 after inspection of KamLAND main tank. But , it was removed for leakage problem.
- New 800 MIB will be produced and deployed in end of this year.
- KamLAND2/KamLAND2-Zen will be future project. Some of other possibility.