(Continuous Variables) Quantum Optics, Quantum Information and Relativistic Quantum Information

David Edward Bruschi

York Centre of Quantum Technologies
Department of Physics
University of York
the (now Brexited) United Kingdom

XVII August MMXVII

Partially based on: Introductory Quantum Optics, C. C. Gerry and P. L. Knight.
1 Introduction
- High energy physics
- Low energy physics

2 Quantum Optics
- Quantum Optics premises
- Quantum Optics implementations

3 Convariance matrix formalism
- Gaussian states
- Entanglement of bipartite Gaussian states
- Examples with Gaussian states

4 (Quantum) Information Theory
- Quantum Information theory: teleportation
- Conclusions
Quantum Electro Dynamics (QED)

Relativistic and quantum Lagrangian \mathcal{L}_{QED} for matter interacting with light

$$\mathcal{L}_{\text{QED}} = \bar{\psi} \left(i \gamma^\mu D^\mu - m \right) \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}.$$

- γ^μ are Dirac matrices;
- ψ a bispinor field of spin-1/2 particles (e.g. electron-positron field);
- $\bar{\psi} \equiv \psi^\dagger \gamma^0$, called ”psi-bar”, also referred to as the Dirac adjoint;
- $D^\mu \equiv \partial^\mu + i e A^\mu + i e B^\mu$ is the gauge covariant derivative;
- e is the coupling constant, i.e., the electric charge of the bispinor field;
- m is the mass of the electron or positron;
- A^μ is the covariant four-potential of the electromagnetic field generated by the electron itself;
- B^μ is the external field imposed by external source;
- $F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu$ is the electromagnetic field tensor.
High energy physics - Interacting theory

- Construct vertex from the interaction coupled-term $\mathcal{L}_I \sim e \bar{\psi} \gamma^\mu \psi A_\mu$;
- Coupling strength $\lambda \sim e$;
- Energy, momentum, charge must be conserved in physical processes;
Semiclassical theory

Low energy physics of light and matter

In the low energy physics regime we can safely ignore details of light-matter interaction contained in \mathcal{L}_{QED}. We can employ a semiclassical theory.
Semiclassical theory

Low energy physics of light and matter

In the low energy physics regime we can safely ignore details of light-matter interaction contained in \mathcal{L}_{QED}. We can employ a semiclassical theory.

Classical and quantum fields (the latter with $[\hat{a}_{k,s}, \hat{a}^\dagger_{k',s'}] = \delta^3(k - k') \delta_{ss'}$)

\[
A(x, t) = \sum_s \int d^3 k \ e_{k,s} \left[A_{k,s} e^{i(k \cdot x - \omega_k t)} + A_{k,s}^* e^{-i(k \cdot x - \omega_k t)} \right],
\]

\[
\hat{A}(x, t) = \sum_s \int d^3 k \ e_{k,s} \left[\hat{a}_{k,s} e^{i(k \cdot x - \omega_k t)} + \hat{a}_{k,s}^\dagger e^{-i(k \cdot x - \omega_k t)} \right].
\]
Semiclassical theory

Low energy physics of light and matter

In the low energy physics regime we can safely ignore details of light-matter interaction contained in \mathcal{L}_{QED}. We can employ a semiclassical theory.

Classical and quantum fields (the latter with $[\hat{a}_{k,s}, \hat{a}^\dagger_{k',s'}] = \delta^3(k - k') \delta_{ss'}$)

\[
A(x, t) = \sum_s \int d^3k e_{k,s} \left[A_{k,s} e^{i(k \cdot x - \omega_k t)} + A^*_{k,s} e^{-i(k \cdot x - \omega_k t)} \right],
\]
\[
\hat{A}(x, t) = \sum_s \int d^3k e_{k,s} \left[\hat{a}_{k,s} e^{i(k \cdot x - \omega_k t)} + \hat{a}^\dagger_{k,s} e^{-i(k \cdot x - \omega_k t)} \right].
\]

Classical field

Classical Hamiltonian of e.m. field:

\[
H_0 = \sum_s \int d^3x \omega(k) A^*_{k,s} A_{k,s}.
\]

Quantized field

Quantum Hamiltonian of e.m. field

\[
\hat{H}_0 = \sum_s \int d^3k \omega(k) \hat{a}^\dagger_{k,s} \hat{a}_{k,s} + E_0.
\]
Moving to Quantum Optics

Quantized electric and magnetic fields

\[\hat{E}(x, t) = i \sum_s \int d^3 k \, \tilde{e}_{k,s} \left[\hat{a}_{k,s} e^{i(k \cdot x - \omega_k t)} + \hat{a}_{k,s}^\dagger e^{-i(k \cdot x - \omega_k t)} \right] \]

\[\hat{B}(x, t) = \frac{i}{c} \sum_s \int d^3 k \left(\frac{k}{|k|} \times \tilde{e}_{k,s} \right) \left[\hat{a}_{k,s} e^{i(k \cdot x - \omega_k t)} + \hat{a}_{k,s}^\dagger e^{-i(k \cdot x - \omega_k t)} \right]. \]

We now make important considerations:

i) Most quantum optical situations, coupling of field to matter is through electric field interacting with a dipole moment or through some nonlinear type of interaction involving powers of the electric field;

ii) Focus on the electric field \(\hat{E}(x, t) \);

iii) Magnetic field is “weaker” than the electric field by a factor of \(\frac{1}{c} \);

iv) Field couples to the spin magnetic moment of the electrons;

v) This interaction is negligible for essentially all the aspects of Quantum Optics that we are concerned with;

vi) Negligible spatial variation of field over dimensions of atomic system.
From the electromagnetic field to modes of light

Dipole approximation:

\[\hat{E}(x, t) \sim \tilde{e}_x \left[\hat{a} e^{-i \omega_k t} + \hat{a}^\dagger e^{i \omega_k t} \right], \quad [\hat{a}, \hat{a}^\dagger] = 1. \]

For our purposes: replace field operator \(\hat{E}(x, t) \) by single bosonic mode \(\hat{a} \).
From the electromagnetic field to modes of light

Dipole approximation:

\[\hat{E}(x, t) \sim \tilde{e}_x [\hat{a} e^{-i \omega_k t} + \hat{a}^\dagger e^{i \omega_k t}] , \quad [\hat{a}, \hat{a}^\dagger] = 1. \]

For our purposes: replace field operator \(\hat{E}(x, t) \) by single bosonic mode \(\hat{a} \).

Significant states of one-mode \(\hat{a} \)

Vacuum state \(|0\rangle \): \(\hat{a} |0\rangle = 0 \).

Number state \(|n\rangle \): \(\hat{a}^\dagger \hat{a} |n\rangle = n |n\rangle \),

\[|n\rangle = \frac{(\hat{a}^\dagger)^n}{\sqrt{n!}} |0\rangle. \]

Coherent state \(|\alpha\rangle \):

\[|\alpha\rangle = \exp[\alpha \hat{a} - \alpha^* \hat{a}^\dagger] |0\rangle. \]

Single-mode squeezed state \(|s\rangle \):

\[|s\rangle = \exp[s \hat{a}^\dagger^2 - s^* \hat{a}^2] |0\rangle. \]

Significant states of two-modes \(\hat{a}, \hat{c} \)

Vacuum state \(|0\rangle \): \(\hat{a} |0\rangle = \hat{c} |0\rangle = 0 \).

Number state \(|n, m\rangle \):

\[[\hat{a}^\dagger \hat{a} + \hat{b}^\dagger \hat{b}] |n, m\rangle = (n + m) |n, m\rangle , \]

\[|n, m\rangle = \frac{(\hat{a}^\dagger)^n}{\sqrt{n!}} \frac{(\hat{b}^\dagger)^m}{\sqrt{m!}} |0\rangle. \]

Two-mode squeezed state \(|r\rangle \):

\[|r\rangle = \exp[r \hat{a}^\dagger \hat{b}^\dagger - r^* \hat{a} \hat{b}] |0\rangle. \]

We have \([\hat{a}, \hat{b}] = [\hat{a}, \hat{b}^\dagger] = 0\).
Phase space representation of interesting states

\[|\alpha\rangle = \exp[\alpha \hat{a} - \alpha^* \hat{a}^\dagger] |0\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_n \frac{\alpha^n}{\sqrt{n!}} |n\rangle. \]

\[\rho(T) = \frac{1}{\cosh^2 r} \sum_n \tanh^n r |n\rangle\langle n|, \quad \tanh r = e^{-\frac{\hbar \omega}{k_B T}}. \]

\[|s\rangle = \exp[s \hat{a}^\dagger^2 - s^* \hat{a}^2] |0\rangle = \frac{1}{\cosh s} \sum_n \tanh^n s |2n\rangle. \]
Operations in Quantum Optics

Time evolution / transformation of states ρ: $\rho(\lambda) = U^\dagger(\lambda) \rho(0) U(\lambda),$
Operations in Quantum Optics

Time evolution / transformation of states ρ:

$$
\rho(\lambda) = U^\dagger(\lambda) \rho(0) U(\lambda),
$$

Linear unitary operations: effectively reduced to

- Free evolution/phase shifting:
 $$
 U(t) = \exp[-i \omega_a t (= \phi) \hat{a} \dagger \hat{a}].
 $$
- Beam splitting:
 $$
 U(\theta) = \exp[-i \theta (\hat{a} \dagger \hat{b} + \hat{a} \dagger \hat{b} \dagger)].
 $$
- Single mode squeezing:
 $$
 U(s) = \exp[(s \hat{a} \dagger \dagger - s^* \hat{a}^2)].
 $$
- Two mode squeezing:
 $$
 U(r) = \exp[(r \hat{a} \dagger \hat{b} \dagger - r^* \hat{a} \hat{b})].
 $$
Operations in Quantum Optics

Time evolution / transformation of states \(\rho \):

\[
\rho(\lambda) = U^\dagger(\lambda) \rho(0) U(\lambda),
\]

Linear unitary operations: effectively reduced to

Free evolution/phase shifting:
\[
U(t) = \exp[-i \omega_a t (= \phi) \hat{a}^{\dagger} \hat{a}].
\]

Beam splitting:
\[
U(\theta) = \exp[-i \theta (\hat{a}^{\dagger} \hat{b} + \hat{a} \hat{b}^{\dagger})].
\]

Single mode squeezing:
\[
U(s) = \exp[(s \hat{a}^{\dagger}, 2 - s^* \hat{a}^2)].
\]

Two mode squeezing:
\[
U(r) = \exp[(r \hat{a}^{\dagger} \hat{b}^{\dagger} - r^* \hat{a} \hat{b})].
\]

Non-linear unitary operations: effectively reduced to

PDC:
\[
U(\xi) = \exp[\xi \hat{a}^{\dagger} \hat{b}^{\dagger} \hat{c} - \xi^* \hat{a} \hat{b} \hat{c}^{\dagger}].
\]
Quantum Optics laboratory

Now use BCH: \[e^{\hat{A}} e^{\hat{B}} = e^{\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]+...} \].

Figure: Figure from phys.org
Gaussian states of light

Picking experimentally realisable states of light

i) Very few states can be realised in optics laboratories (i.e., not $|\psi_1\rangle$);
ii) Employable states are prepared using linear optics;
iii) These state can be manipulated with linear optics.
Gaussian states of light

Picking experimentally realisable states of light

i) Very few states can be realised in optics laboratories (i.e., not $|981\rangle$);
ii) Employable states are prepared using linear optics;
iii) These states can be manipulated with linear optics.

We choose to work with Gaussian states
Gaussian states of light

Picking experimentally realisable states of light

i) Very few states can be realised in optics laboratories (i.e., not $|981\rangle$);
ii) Employable states are prepared using linear optics;
iii) These state can be manipulated with linear optics.

We choose to work with Gaussian states

Gaussian states

i) Have Gaussian Wigner function;
$W(\xi) = \frac{1}{\pi^2} \int_{\mathbb{R}^2N} d^2N \chi_s(\kappa) e^{iX \cdot \Omega \xi}$
i) Wigner function is positive;
iii) Are defined by finite d.o.f.;
iv) Produced in every Q.O. lab.
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, \ldots, \hat{a}_N$;
Covariance matrix formalism

Gaussian states

- \(N \) modes of light \(\hat{a}_1, ..., \hat{a}_N \);
- Introduce \(\hat{X} := (\hat{a}_1, ..., \hat{a}_N, \hat{a}_1^\dagger, ..., \hat{a}_N^\dagger)^T \);
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, \ldots, \hat{a}_N$;
- Introduce $\hat{\mathbf{x}} := (\hat{a}_1, \ldots, \hat{a}_N, \hat{a}_1^\dagger, \ldots, \hat{a}_N^\dagger)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm}$.
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, ..., \hat{a}_N$;
- Introduce $\hat{X} := (\hat{a}_1, ..., \hat{a}_N, \hat{a}_1^\dagger, ..., \hat{a}_N^\dagger)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm}$.
- Symplectic form Ω: $\Omega_{nm} = \text{diag}(-i, -i, ..., i, i, ...)$.
Covariance matrix formalism

Gaussian states

- N modes of light \(\hat{a}_1, ..., \hat{a}_N \);
- Introduce \(\hat{X} := (\hat{a}_1, ..., \hat{a}_N, \hat{a}_1^\dagger, ..., \hat{a}_N^\dagger) \)
- Commutation relations: \([\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm} \).
- Symplectic form \(\Omega \): \(\Omega_{nm} = \text{diag}(-i, -i, ..., i, i, ...) \).
- First moments \(d \): \(d := \langle \hat{X} \rangle_\rho \).
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, ..., \hat{a}_N$;
- Introduce $\hat{\mathbf{X}} := (\hat{a}_1, ..., \hat{a}_N, \hat{a}_1^\dagger, ..., \hat{a}_N^\dagger)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm}$.
- Symplectic form Ω: $\Omega_{nm} = \text{diag}(-i, -i, ..., i, i, ...)$.
- First moments d: $d := \langle \hat{\mathbf{X}} \rangle_\rho$.
- Second moments σ: $\sigma_{nm} := \langle \{ \hat{\mathbf{X}}_n, \hat{\mathbf{X}}_m^\dagger \} \rangle_\rho - 2 \langle \hat{\mathbf{X}}_n \rangle_\rho \langle \hat{\mathbf{X}}_m^\dagger \rangle_\rho$.

Linear transformations

- Quadratic in $\hat{a}_n, \hat{a}_m^\dagger$;
- N-mode linear represented by $2^N \times 2^N$ symplectic matrix S.
- Symplectic: $S^\dagger \Omega S = \Omega$.
- Unitary $U = \exp[-i H t]$: represented by $S = \exp[-i F(t) \Omega H]$.

Here $H = \frac{1}{2} \mathbf{X}^T H \mathbf{X}$.
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, \ldots, \hat{a}_N$;
- Introduce $\hat{X} := (\hat{a}_1, \ldots, \hat{a}_N, \hat{a}_1^\dagger, \ldots, \hat{a}_N^\dagger)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm}$.
- Symplectic form Ω: $\Omega_{nm} = \text{diag}(-i, -i, \ldots, i, i, \ldots)$.
- First moments d: $d := \langle \hat{X} \rangle_\rho$.
- Second moments σ: $\sigma_{nm} := \langle \{\hat{X}_n, \hat{X}_m^\dagger\} \rangle_\rho - 2 \langle \hat{X}_n \rangle_\rho \langle \hat{X}_m^\dagger \rangle_\rho$.

Linear transformations

- Quadratic in $\hat{a}_n, \hat{a}_m^\dagger$;
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, \ldots, \hat{a}_N$;
- Introduce $\hat{\mathbf{X}} := (\hat{a}_1, \ldots, \hat{a}_N, \hat{a}^\dagger_1, \ldots, \hat{a}^\dagger_N)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}^\dagger_m] = i \Omega_{nm}$.
- Symplectic form Ω: $\Omega_{nm} = \text{diag}(-i, -i, \ldots, i, i, \ldots)$.
- First moments d: $d := \langle \hat{\mathbf{X}} \rangle_\rho$.
- Second moments σ: $\sigma_{nm} := \langle \{\hat{\mathbf{X}}_n, \hat{\mathbf{X}}^\dagger_m\} \rangle_\rho - 2 \langle \hat{\mathbf{X}}_n \rangle_\rho \langle \hat{\mathbf{X}}^\dagger_m \rangle_\rho$.

Linear transformations

- Quadratic in $\hat{a}_n, \hat{a}^\dagger_m$;
- N-mode linear represented by $2N \times 2N$ symplectic matrix S.
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, ..., \hat{a}_N$;
- Introduce $\hat{X} := (\hat{a}_1, ..., \hat{a}_N, \hat{a}_1^\dagger, ..., \hat{a}_N^\dagger)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm}$.
- Symplectic form Ω: $\Omega_{nm} = \text{diag}(-i, -i, ..., i, i, ...)$.
- First moments d: $d := \langle \hat{X} \rangle_\rho$.
- Second moments σ: $\sigma_{nm} := \langle \{\hat{X}_n, \hat{X}_m^\dagger\} \rangle_\rho - 2 \langle \hat{X}_n \rangle_\rho \langle \hat{X}_m^\dagger \rangle_\rho$.

Linear transformations

- Quadratic in $\hat{a}_n, \hat{a}_m^\dagger$;
- N-mode linear represented by $2N \times 2N$ symplectic matrix S.
- Symplectic: $S^\dagger \Omega S = \Omega$.
Covariance matrix formalism

Gaussian states

- N modes of light $\hat{a}_1, \ldots, \hat{a}_N$;
- Introduce $\hat{X} := (\hat{a}_1, \ldots, \hat{a}_N, \hat{a}_1^\dagger, \ldots, \hat{a}_N^\dagger)^T$;
- Commutation relations: $[\hat{a}_n, \hat{a}_m^\dagger] = i \Omega_{nm}$.
- Symplectic form Ω: $\Omega_{nm} = \text{diag}(-i, -i, \ldots, i, i, \ldots)$.
- First moments d: $d := \langle \hat{X} \rangle_\rho$.
- Second moments σ: $\sigma_{nm} := \langle \{\hat{X}_n, \hat{X}_m^\dagger\} \rangle_\rho - 2 \langle \hat{X}_n \rangle_\rho \langle \hat{X}_m^\dagger \rangle_\rho$.

Linear transformations

- Quadratic in $\hat{a}_n, \hat{a}_m^\dagger$;
- N-mode linear represented by $2N \times 2N$ symplectic matrix S.
- Symplectic: $S^\dagger \Omega S = \Omega$.
- Unitary $U = \exp[-i H t]$: represented by $S = \exp[-i F(t) \Omega H]$.
 Here $H = \frac{1}{2} \hat{X}^T \hat{H} \hat{X}$.
Covariance matrix formalism

Gaussian states

Gaussian states are defined by only **first** and **second moments**: they are defined **univocally** by the covariance matrix σ and the first moments d.

$$\sigma = S^{\dagger} \nu \otimes S$$

Here $\nu \otimes = \text{diag}(\nu_1, \nu_2, ..., \nu_1, \nu_2, ...) \text{ is the Williamson form of } \sigma \text{ and } \nu_k \geq 1 \text{ are the symplectic eigenvalues of } \sigma.$$

Purity

N.B. The state σ is pure iff $\nu_k = 1$ for all k. The symplectic eigenvalues are $\nu_k = \coth(\hbar \omega_k K b T_k)$.

Covariance matrix formalism

Gaussian states

Gaussian states are defined by only first and second moments: they are defined univocally by the covariance matrix σ and the first moments d.

Williamson Theorem

$$\sigma = S^\dagger \nu \oplus S$$

Here $\nu = \text{diag}(\nu_1, \nu_2, ..., \nu_1, \nu_2, ...)$ is the Williamson form of σ and $\nu_k \geq 1$ are the symplectic eigenvalues of σ.

N.B. The state σ is pure iff $\nu_k = 1$ for all k. The symplectic eigenvalues are $\nu_k = \coth(\hbar \omega_k K_b T_k)$.
Gaussian states are defined by only **first and second moments**: they are defined **univocally** by the covariance matrix σ and the first moments d.

Williamson Theorem

$$\sigma = S^\dagger \nu \oplus S$$

Here $\nu \oplus = \text{diag}(\nu_1, \nu_2, ..., \nu_1, \nu_2, ...)$ is the Williamson form of σ and $\nu_k \geq 1$ are the symplectic eigenvalues of σ.

Purity

N.B. The state σ is pure iff $\nu_k = 1$ for all k. The symplectic eigenvalues are $\nu_k = \coth\left(\frac{\hbar \omega_k}{K_b T_k}\right)$.
Quantum optics with covariance matrix formalism

Gaussian state evolution/transformations

\[\sigma(\lambda) = S^\dagger(\lambda) \sigma(0) S(\lambda) \].
Quantum optics with covariance matrix formalism

Gaussian state evolution/transformations

\[
\sigma(\lambda) = S^\dagger(\lambda) \sigma(0) S(\lambda).
\]

Gaussian vs. non-Gaussian states

<table>
<thead>
<tr>
<th>Non-Gaussian / Hilbert</th>
<th>Gaussian / CM formalism</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) (N) modes;</td>
<td>i) (N) modes;</td>
</tr>
<tr>
<td>ii) Infinite d.o.f.;</td>
<td>ii) Finite d.o.f.;</td>
</tr>
<tr>
<td>iii) Tensor product Hilbert space;</td>
<td>iii) Direct sum CM construction;</td>
</tr>
<tr>
<td>iv) Unitary linear operators;</td>
<td>iv) 2(N \times 2)(N) symplectic matrices;</td>
</tr>
<tr>
<td>v) Trace operation: infinite sums.</td>
<td>v) Trace operation: delete rows/columns.</td>
</tr>
<tr>
<td>vi) Entanglement: very difficult measures to compute.</td>
<td>vi) Entanglement: see next.</td>
</tr>
</tbody>
</table>
Entanglement of Gaussian states

Separability and entanglement

The state ρ_{AB} separable if exists $\rho_{AB} = \rho_A \otimes \rho_B$. If not, it is entangled. EPR state: $|\Psi\rangle = \frac{1}{\sqrt{2}} [|01\rangle + |10\rangle]$.

Symplectic eigenvalues $\nu_k \geq 1$: spectrum of $i\Omega\sigma$. Symplectic spectrum of the partial transpose

Compute spectrum $\tilde{\nu}_k$ of $i\Omega P^\dagger\sigma P$. Here P implements partial transposition of one mode.
Entanglement of Gaussian states

Separability and entanglement

The state \(\rho_{AB} \) separable if exists \(\rho_{AB} = \rho_A \otimes \rho_B \). If not, it is entangled.

EPR state: \(|\Psi\rangle = \frac{1}{\sqrt{2}} [|01\rangle + |10\rangle] \).

Symplectic eigenvalues \(\nu_k \geq 1 \): spectrum of \(i \Omega \sigma \).
Entanglement of Gaussian states

Separability and entanglement

The state ρ_{AB} separable if exists $\rho_{AB} = \rho_A \otimes \rho_B$. If not, it is entangled.

EPR state: $|\Psi\rangle = \frac{1}{\sqrt{2}} [|01\rangle + |10\rangle]$.

Symplectic eigenvalues $\nu_k \geq 1$: spectrum of $i \Omega \sigma$.

Symplectic spectrum of the partial transpose

Compute spectrum $\tilde{\nu}_k$ of $i \Omega P^\dagger \sigma P$. Here P implements partial transposition of one mode.

Of these eigenvalues $\tilde{\nu}_k$ take the smallest (in absolute value), called $\tilde{\nu}_-$.
An example: using Hilbert space formalism

Start from the vacuum state $|0\rangle$. Use linear optics and two-mode squeeze the vacuum with $U(r) := \exp[-r (\hat{a}^\dagger \hat{b}^\dagger - \hat{a} \hat{b})]$. (Lots of) algebra:

$$ |\Psi(r)\rangle = U(r) |0\rangle = \sum_n \frac{\tanh^n r}{\cosh r} |n, n\rangle. $$

The state $\rho(r)$ is:

$$ \rho(r) = |\Psi(r)\rangle\langle\Psi(r)| = \sum_{n,m} \frac{\tanh^{n+m} r}{\cosh^2 r} |n, n\rangle\langle m, m|. $$

Partial transpose mode \hat{b} is

$$ \tilde{\rho}(r) = |\Psi(r)\rangle\langle\Psi(r)| = \sum_{n,m} \frac{\tanh^{n+m} r}{\cosh^2 r} |n, m\rangle\langle m, n|. $$

Choose measure: Negativity $\mathcal{N} := \frac{\text{Tr}(\sqrt{\tilde{\rho}^\dagger \tilde{\rho}}) - 1}{2}$

More algebra: $\mathcal{N} = \frac{e^{2r} - 1}{2}$.
An example: using **Covariance Matrix** formalism

Start from the vacuum state σ_0. Use linear optics and two-mode squeeze the vacuum with $S(r)$. (Little) algebra:

\[
\sigma_0 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}, \quad S(r) = \begin{pmatrix}
cosh r & 0 & 0 & \sinh r \\
0 & \cosh r & \sinh r & 0 \\
0 & \sinh r & \cosh r & 0 \\
\sinh r & 0 & 0 & \cosh r \\
\end{pmatrix}.
\]

The state $\sigma(r) := S^\dagger(r) \sigma_0 S(r)$ is:

\[
\sigma(r) = \begin{pmatrix}
cosh 2r & 0 & 0 & \sinh 2r \\
0 & \cosh 2r & \sinh 2r & 0 \\
0 & \sinh 2r & \cosh 2r & 0 \\
\sinh 2r & 0 & 0 & \cosh 2r \\
\end{pmatrix}.
\]
An example: using Covariance Matrix formalism

Partial transpose mode \hat{b} is implemented by P and obtain $P^\dagger \sigma P$

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}, \quad P^\dagger \sigma P = \begin{pmatrix}
\cosh 2r & \sinh 2r & 0 & 0 \\
\sinh 2r & \cosh 2r & 0 & 0 \\
0 & 0 & \cosh 2r & \sinh 2r \\
0 & 0 & \sinh 2r & \cosh 2r \\
\end{pmatrix}.
\]

Compute the spectrum of $i \Omega P^\dagger \sigma P$, which is

\[
\{ e^{2r}, \tilde{\nu}_- = e^{-2r}, -e^{2r}, -e^{-2r}, \}.
\]

Choose measure: Negativity $\mathcal{N} := \frac{1 - \tilde{\nu}_-}{2 \tilde{\nu}_-}$.

Simply obtain: $\mathcal{N} = \frac{e^{2r} - 1}{2}$.
Quantum Information

Information theory aims at understanding how to...

- Store
- Transmit
- Decode
- Quantify
- Employ
- Secure

...information
Quantum Information

Information theory aims at understanding how to...

...information

<table>
<thead>
<tr>
<th></th>
<th>Classical IT</th>
<th>Discrete QI</th>
<th>CV QI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems</td>
<td>Bits ("0" and "1")</td>
<td>Qbits (</td>
<td>0⟩ and</td>
</tr>
<tr>
<td>Dimensions</td>
<td>2^N</td>
<td>2^N</td>
<td>Infinite</td>
</tr>
<tr>
<td>Gates</td>
<td>Classical Boolean</td>
<td>Unitaries</td>
<td>Linear unitaries</td>
</tr>
<tr>
<td>Measurements</td>
<td>Magnetic readout</td>
<td>Projective</td>
<td>Projective</td>
</tr>
</tbody>
</table>
Discrete Variables

i) Generate EPR. One qubit to A, other to B;

ii) Bell measurement at A of EPR pair qubit and the qubit (|φ⟩) to be teleported. Yield one of four measurement outcomes, encoded in two classical bits;

iii) Using the classical channel, the two bits are sent from A to B. (Speed less than c);

iv) Result of measurement at A, EPR pair qubit at B in one of four possible states. Of these, one identical to the original quantum state |φ⟩, other three are closely related. Which of these four possibilities actually obtains is encoded in the two classical bits. Knowing this, the qubit at location B is modified to result in a qubit identical to |φ⟩.

Figure: Figure from Wikipedia
Continuous Variables

i) Generate EPR-like state: two-mode squeezed state;

ii) CV version of Bell measurement. Beam split modes \hat{a} and “in”. Homodyne detect quadratures $\hat{x}_-\text{ and } \hat{p}_+$;

iii) Classical channel, same as before;

iv) Similar as before. Use classical information to perform extra displacement. Obtain initial state ρ_{in}.

Figure: Protocol and figure based on Section IV.B in Laser Physics 16, 1418 (2006)
Relativistic Quantum Teleportation

i) Generate usual squeezed state;

ii.i) Homodyne measurement at A of local mode and the mode to be teleported;

ii.ii) Rob moves! Field inside Rob’s cavity is affected by motion. Mode from squeezed state is mixed to other modes;

iii) Using the classical channel, the two bits are sent from A to R. (Speed less than c);

iv) Result like before but depends also on motion.

Figure: PRL 110, 113602 (2013)
Conclusions

Quantum Information

Information Theory
Thermodynamics

Quantum Mechanics

Relativity

Black Hole Thermodynamics

QFT in curved spacetime

Relativistic Quantum Information
Acknowledgments

Thank you