

Status of NICA

V. Kekelidze,

NICA

A.Kovalenko, R.Lednicky, V.Matveev, I.Meshkov, G.Trubnikov, A.Sorin Joint Institute for Nuclear Research, Dubna

> Volga river

6-th International Conference on New Frontiers in Physics 17-29 August 2017

NICA (Nuclotron based Ion Colider fAcility

Main targets:

- study of hot and dense baryonic matter

at the energy range of max baryonic density

investigation of nucleon spin structure, polarization phenomena

- development of accelerator facility for HEP @ JINR

construction of Collider of relativistic ions from p to Au,

polarized protons and deuterons

with max energy up to $\sqrt{S_{NN}} = 11 \text{ GeV} (Au^{79+})$ and = 27 GeV (p)

experiments at NICA

Structure and Operation Regimes

Injection complex: 4 ion sources

	Source	KRION-6T	Laser	Douplasmatron	SPI new !
	particles	Au ³¹⁺	up to Mg ¹⁰⁺	p, d, He ²⁺	↑p,↑d
to be	particle/cycle commissioned	~2.5 10 ⁹	~10 ¹¹	p, d ~5 10 ¹² He ²⁺ ~10 ¹¹	5 10 ¹¹
	repetition, Hz	10	0,5	1	0,2

commissioning: June '16

Injection complex: 2 Linacs

Linac	LU-20	HILAC new !					
structure (section number)	RFQ + Alvarez type	RFQ + IH DTL(2)					
mass to charge ratio A/Z	1-3	1-6					
injection energy, keV/amu	150 for A/Z 1-3	17					
extraction energy, MeV/amu	5 (A/Z 1-3)	3.24 (A/Z=6)					
input current, mA	up to 20	up to 10					

LU-20 – new fore-injector: JINR, INR, ITEP, MEPHI

HILAC: "BEVATECH OHG"

Machines: Nuclotron (in operation since 1993)

Parameters	Nuclotron
type	SC synchrotron
particles	↑p,↑d, nuclei
injection energy, MeV/u	5 (∱p,∱d) 570-685 (<mark>Au</mark>)
max. kin. energy, GeV/u	12.07 (个p); 5.62 (个d) 4.38 (<mark>Au</mark>)
magnetic rigidity, T m	25 – 43.25
circumference, m	251.52
cycle for collider mode, s	1.5-4.2 (active); 5.0 (total)
vacuum, Torr	10 -9
intensity, Au ions/pulse	1 10 ⁹
transition energy, GeV/u	7.0
RF range, MHz	0.6 -6.9 (↑p,↑d) 0.947 – 1.147 (nuclei)
spill of slow extraction, s	up to 10

modernized in 2010-2015

August 23

Machine: Booster (under construction)

Parameter	Booster	Li So Yon (South Korean Cosmonaut)
type	SC synchrotron	LHEP JINK, Dublia, 7 Sep., 2011
particles	ions A/Z <u><</u> 3	empty toke of Synchronasatron
injection energy, MeV/u	3.2	
maximum energy, GeV/u	0.6	
magnetic rigidity, T m	1.6 – 25.0	
circumference, m	210.96	
cycle for collider mode, s	4.02 (active); 5.0 (total)	
vacuum, Torr	10 ⁻¹¹	
intensity, Au ions/pulse	1.5 10 ⁹	
transition energy, GeV/u	3.25	
RF range, MHz	0.5 -2.53	
spill of slow extraction, s	up to 10	
Commissionin	a in 2019	tunnel for Booster

August 23

BINP contribution to the Booster

tested at JINR - Oct. '14
commissioning - 2017

fabricated and tested at BINP in 2016 delivered to JINR in April 2017 commissioning is planed in 2017

Project status: on schedule

August 23

Nuclotron development

- ♦ Stable and safe operation up to maximum design energy
- ♦ Beam time for users > 70%
- \diamond Time losses < 8%
- ♦ Development of cryogenic facility
- Modern automatic control system based on TANGO
- ♦ Test of stochastic cooling
- ♦ New RFQ fore-injector for LU-20

2 – 4 GHz bandwidth, the cooling of bunched and coasting deuteron and carbon beams was achieved

momentum spread of d beam

Nuclotron runs in 2015 - 2017

- Run 51 (d, Li, C)
- Run 52 (d...) *Technical*
- Run 53 (d↑, Li)
- Run 54 (d↑,..)
- Run 51 (Kr, C)

26 Jan. - 26 Mar., 2015

- June 2 July 8, **2016**
- Oct. 19 Dec. 25, 2016
- Feb. 1 Mar. 24 , **2017**
 - *Nov. Dec., 2017*

The 5th Workshop of Nuclotron users will take place on 5–6 October, 2017

The Collider

45 T*m, 4.5 GeV/u for Au⁷⁹⁺

BINP contribution to the Collider

RF: Leader A. Tribendis (stage of working design)

Electron Cooler

Leader ac. V. Parkhomchuk (stage of working design)

Electron energy, max., MeV	2.5
Electron beam current, A	0.1 - 1.0

SC Magnets for Booster, Collider & SIS-100/FAIR workshop at VBLHEP JINR (bld. 217)

Serial tests of Booster magnets have started

status of **booste**r magnet fabrication 16.08.2017

			produ	uced		
APA	magnet type	required	yokes	coils	tested	
	dipole	40	40	36	22	
	quadrupole	48	48	38	2	S FYR
C	correcting	32	26	-		
				<u> </u>		

Magnet production plan

H. Khodzhibagiyan,				2015			2016			2017					2018				2019				20		
S. Kostromin		Ι	П	III	IV	Ι	II	III	IV	I	П	III	IV	I	П	III	IV	I	П	Ш	IV	Ι	П		IV
Booster																									
dipoles	40+3																								
quadrupoles	48+6																								
multipole correctors	40+4																								
Collider																									
dipoles	80+5																								
quadrupoles	86+5																								
multipole correctors																									
nonstructurals																									
SIS-100																									
pre-series quadrupole	2																								
pre-series sextupole correctors	1																								
pre-series dipole correctors	2																								
pre-series multipole correctors	2																								
quadrupole	166																								
sextupole correctors	48																								
dipole correctors	83																								
multipole correctors	12																								

August 23

He liquefier has been put in operation, 1000 l/h

Physics program at NICA

Exploration of the QCD PD - Density Frontier

Exploring high-density baryonic matter: maximum freeze-out density

NICA is well suited for exploring the transition between the hadronic and q-g phases at the highest baryon density. This is the top priority of the NICA program.

August 23

Physics objectives

- Bulk properties, EOS
 - particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
 - onset of low-mass dilepton enhancement
- Deconfinement (chiral) phase transition at high $\rho_{\rm B}$
 - enhanced strangeness production
- QCD Critical Point
 - event-by-event fluctuations & correlations
- Chiral Magnetic (Vortical) effect, A polarization
- Y-N interactions in dense nuclear matter
 hypernuclei

New issues: NICA White Paper, SQM proceedings

Physics targets for the exploration of first order phase transitions in the region of the QCD phase diagram accessible to NICA & CBM and possible observable effects of a "mixed phase culminates this year in the release of the "NICA White Paper" as a Topical Issue of the **EPJ A** (July 2016).

The European Physical Journal

JOURNAL OF PHYSICS: CONFERENCE SERIES The open access journal for conferences 15th International Conference on Strangeness in Quark Matter (SQM2015)

ISSN 1742-6588

Dubna, Russia 6–11 July 2015

Editors: David E. Alvarez-Castillo, David Blaschke, Vladimir Kekelidze, Victor Matveev and Alexander Sorin

Volume 668 2016

jpcs.iop.org

IOP Publishing

August 23

volume 52 · number 8 · august · 2016

Present and future HI experiments

Present and future HI F.T. experiments

Baryonic Matter at Nuclotron (BM@N)

experiment at Nuclotron extracted beams

Physics:

- ✓ strange / multi-strange hyperon and hypernuclei production at the threshold
- ✓ hadron femtoscopy
- short range correlations
- event-by event fluctuations
- ✓ in-medium modifications of strange & vector mesons in dense nuclear matter
- \checkmark electromagnetic probes, states decaying into γ , e (with ECAL)

BM@N plans

year	2016	2017 FebMar.	2017 NovDec.	2019	2020 +
beam	d (↑)	C, Ar	Kr	Au	Au, p
maximum intensity, Hz	1M	1M	1M	1M	10M
trig. rate, Hz	10k	10k	20k	20k	50k
central tracker	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEM or 8+2Si
expiment status	techn. run	techn. run	physics run	physics stage 1	physics stage 2

beam: *E_{kin}* = 3.5, 4.0, 4.5 AGeV

Present and future HI collider experiments

MultiPurpose Detector (MPD)

Main target:

- study of hot and dense baryonic matter at the energy range of max net baryonic density

MPD Collaboration:

- JINR, Dubna;
- Tsinghua University, Beijing, China;
- MEPhl, Moscow, Russia.
- INR, RAS, Russia;
- PPC BSU, Minsk, Belarus;
- WUT, Warsaw, Poland;

- FCF-MB UAP, Puebla, Mexico;
 - PI Az.AS, Baku, Azerbaijan;
- ITEP, NC KI, Moscow, Russia;
- PNPI NC KI, Saint Petersburg, Russia;
 - CPPT USTC, Hefei, China;
- SS, HU, Huzhou, Republic of South Africa.

MPD detector for Heavy-Ion Collisions @ NICA

General contractor: **ASG Superconductors,** Genova, Italy

August 23

Status: technical design – completed / close to completion; preparation for the mass production

Study of nucleon spin structure

must confirm the sum rule:

$$\frac{1}{2} = \frac{1}{2}\Sigma_q + \Sigma_g + L_q + L_g.$$

NICA collider will provide collisions of protons and deuterons with all combinations of polarization – *transversal and longitudinal*

It will allow to measure all 8 intrinsic-transverse-momentum dependent PDFs (at leading twist) in one experiment

Matveev-Muradyan-Tavkhelidze-Drell-Yan mechanism and SIDIS processes – are good tools for these measurements

Direct photons production (gluon polarization)

NICA schedule

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Injection complex Lu-20 upgrade HI Source HI Linac									
Nuclotron general development extracted channels									
Collider startup configuration design configuration BM@N I stage									
MPD solenoid TPC, TOF, Ecal (barrel) Upgrade: end-caps +ITS									
MPD Hall SPD Hall collider tunnel HEBT Nuclotron-collider Cryogenic for Booster for Collider									

running time

XXIII International Seminar Relativistic Nuclear Physics & Quantum Chromodynamics Dubna, 19 – 24 September, 2016

In the medium-term prospect the NICA complex will be the only facility in Europe providing unique high intensity ion beams (from **p** to **Au**, **p**↑ and **d**↑) **in the energy range** from **2 – 27 GeV** (c.m.s.), which could be used for both fundamental and applied researches.

Researches at the NICA complex will contribute to

- discovery and study of new forms of nuclear matter;
- comprehensive study of nucleon spin structure;
- applied researches, like irradiation of biological objects by heavy ion beams (space mission program) etc.

ESFRI initiated a hearing of the NICA project in Brussels on September 7, 2015, in order to consider its inclusion to the ESFRI Roadmap

"It is clear that both **FAIR** *and* **NICA** *could have an advantage in developing and extending explicitely their collaboration...."*

August 23

New issue of the ESFRI Roadmap

Main Research Infrastructure in Particle and Nuclear Physics

RF Government disposal

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ

от 27 апреля 2016 г. № 783-р

москва

О подписании Соглашения между Российской Федерации и международной научно-исследовательской организацией О ядерных исследований о создании и экс сверхпроводящих колец на встречных пуч

1. В соответствии с пунктом 1 стать "О международных договорах Российской представленный Минобрнауки России соглас Минфином России, Минэкономразвития I межправительственной научно-исследова Объединенным институтом ядерных исследо между Правительством Российской Феде межправительственной научно-исследова Объединенным институтом ядерных ис и эксплуатации комплекса сверхпроводящих тяжелых ионов NICA (прилагается). 3. Определить вклад Российской Федерации в создание базовой конфигурации комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA до 2020 года в размере 8800 млн. рублей (в ценах 2013 года) за счет средств федерального бюджета.

4. Минобрнауки России выделить в 2016 году 4837,9 млн. рублей

Agreement between the RF Government and the Joint Institute for Nuclear Research

в международную скую организацию в целях финансового их колец на встречных жетных ассигнований, едеральным законом м числе за 2016 год ьеме 2340 млн. рублей,

ачиная с формирования последующие периоды джетные ассигнования ов финансирования ии "Развитие науки и ния вклада Российской лекса сверхпроводящих

has been signed on June 3-d

2. Поручить Минобрнауки России провести переговоры с международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований и по достижении договоренности подписать от имени Правительства Российской Федерации указанное в пункте 1 настоящего распоряжения Соглашение, разрешив вносить в прилагаемый проект изменения, не имеющие принципиального характера. колец на встречных пучках тяжелых ионов NICA до размера, указанного в пункте 3 настоящего распоряжения.

Д.Медведев

2947103

v.ĸekeliaze, ICNFP-2017

NICA complex has a potential for competitive research in dense baryonic matter and spin physics The construction of accelerator complex is going well in close cooperation with BINP The construction of both detectors BM@N & MPD is going close to the schedule Project NICA got a recognition as a part of European research infrastructure NICA got a status of mega-project developed at RF NICA is open for new participants

Thank you!

© west-crete.com

August 23