

ATLAS Physics Prospects at the High-Luminosity LHC

M. Bindi

University of Göttingen - CERN

On behalf of the ATLAS Collaboration

ICNFP 2017 – Kolymbari, Greece; 24th August 2017

Outline

The current ATLAS Detector performance

 The HL-LHC and Phase2 ATLAS detector upgrade and performance

The ATLAS Physics Upgrade program

Physics prospects at HL-LHC

Conclusions and outlook

The ATLAS Detector

LHC and ATLAS Performance

Great performance for LHC in 2016:

- ~ 1.4x10³⁴cm⁻²s⁻¹ record of inst. Lumi.
- ~ 40 fb⁻¹ Lumi. delivered

ATLAS 2016 p-p run conditions :

- good data taking efficiency → ~ 93%
- good data quality → > 96% work. channels
- most of Run-2 results with combined 2015+2016 dataset: 36.1 fb-1
- average (maximum) # interactions per bunch crossing a.k.a. <u>pile-up</u> of ~ 25 (45)

2017 p-p run conditions:

- ~ 1.7x10³⁴ cm⁻² s⁻¹ new record of inst. Lumi
- maximum pile up of ~ 47
- → So far the detector is coping well with it!

Run: 267638

Event: 242090708

Event: 242090700 2015-06-14 01:01:14 CEST 6

ATLAS Detector performance

Pile-up stability

 b-tagging efficiency robust against <µ>

 Stable mass of jets coming from products of highly energetic W bosons and top quarks.

ATLAS Detector performance/2

ATUAS

- Stable muon reconstruction efficiency for a wide range of the muon p_T
- Jet Energy Scale calibration over 2 order of magnitude of the jet p_T

<u>See L. Bellagamba talk for Physics</u> <u>highlights from 2016-2017</u>

Many other ATLAS talks describing the actual detector performance....

HL-LHC program

HL-LHC mode	Peak Luminosity (cm ⁻² s ⁻¹)	Mean number of interactions per bunch-crossing <μ _{PU} >	Integrated luminosity (fb ⁻¹)
Baseline	5x10 ³⁴	140	3000
Ultimate	7.5x10 ³⁴	200	4000

ATLAS Expected Conditions @ HL-LHC

High particle density

High integrated radiation dose

Detector requirements to maximize benefits from high integrated luminosity:

- Withstand the radiation damage.
- Cope with higher bandwidth/trigger rate.
- Minimize pile-up effect (high granularity, fast timing).
- → Improve or maintain current detector performance with harsher conditions!

ATLAS Detector Upgrade (2024-2026)

ATLAS Phase II upgrade scoping document foresees various upgrade scenarios:

CERN-LHCC-2015-020

- → maximize the physics performance and discovery potential of ATLAS
- → Physics targets: precision measurements/rare decays/beyond SM.

ITK: New Inner detector, fully Silicon (strip and pixel) up to $|\eta| = 4$

- STRIP detector released the TDR earlier in 2017
- PIXEL system will do it by the end of 2017.

LAr Calorimeter: New Barrel electronics.

Tile Calorimeter: New electronics.

Muons: New Inner Muon barrel trigger chambers

MUON TDR submitted in June 2017.

Trigger/DAQ: Longer latency system, use of tracking information.

TDAQ TDR expected by the end of 2017.

Other options under discussion:

- Timing detectors (HGTD) → pile-up mitigation for trigger and offline
- Forward muon tagger → gain in acceptance not negligible in some analysis

ATLAS Detector Upgrade (ITK)

- Larger radii than present silicon tracker
- Larger coverage in the forward region
 - \rightarrow coverage up to $|\eta| = 4$
- Minimize amount of inactive material (2-3 x less than current tracker)
- Optimized for high and robust tracking efficiency, track parameter resolutions, two-track separation, while minimizing fake tracks.

Resolution of z_0 impact parameter of tracks:

- crucial to assign tracks to the primary vtx
- better resolution wrt to Run2 inner tracker due to reduced material budget
- deterioration at large |η| due to increased material crossed.
- → <u>Different layout/implementation possibilities</u> <u>still being evaluated since they will impact the</u> <u>physics potential!</u>

ATLAS-TDR-025

ITK Layout options

R [mm]

Letter-of-Intent Layout (rapidity coverage up to $|\eta|=2.7$)
One quadrant of the layout in r-z shown

Recently, two layouts considered for Pixel:

- ITk-Extended layout: uses a long barrel for the two inner-most layers
- ITk-Inclined layout: uses rings to incline the forward-most modules in the barrels (used in Strip TDR 2017)

rapidity coverage up to InI=4.0

ITk - Inclined 2015-2016

See S. Swift talk for tracking beyond Run 2

Physics motivations for Phase II-Trigger upgrade

- Interesting physics signals have low pT leptons
- Need to increase bandwidth at first trigger stage to access relevant signatures under HL-LHC conditions.
 - → Hw track trigger essential; feeds from Muon Drift chambers, Strip and outer Pixel Layers is foreseen.

Upgrade expected performances

Electron energy resolution

ATL-PHYS-PUB-2016-026

B-tagging performance

- Electrons energy resolution not affected by pileup:
 - electron calibration not re-tuned for high pileup samples (same as Run 2).
- For 70% b-jet efficiency (with MV1 tagger):
 - light jet rejection of ~380 with <mu> = 200 (same as best optimized Run-2 b-tagger).
- Muon with P_T < 200 GeV benefit from ITK momentum resolution:
 - B_s^0 mass resolution ($B_s^0 \rightarrow \mu + \mu -$) will improve by ~1.65 (1.5) in the barrel (end-cap) region

GEORG-AUGUST-UNIVERSITÄT Tracking for Pileup suppression in Jet and ME

- Powerful pile-up jets rejection using jet vertex tagging discriminant $RpT = \Sigma pTtrk (PV0)/pT jet$ also in the forward region with new tracker layouts
- With $\langle \mu_{PU} \rangle = 200$, expected ~5 pileup jets per event Analyses typically use factor 50 rejection
- →2% pile-up survival probability for 75/80/85% hard-scat. jet efficiency (η dep.)
- →improved Missing ET resolution via the suppression of forward pileup jets

Physic prospects at HL-LHC

Analysis strategies

Higgs analysis prospects:

- Self-boson and Higgs boson coupling
- Higgs rare decays

SUSY analysis prospects:

- stau direct production
- chargino and neutralino direct production

Search for new heavy bosons/dark matter candidates

Anomalous top decays

ATLAS HL-LHC Analysis Strategy

ATLAS HL-LHC studies have been performed using:

- Upgraded ATLAS detector and trigger systems
- √s = 14 TeV
- $<\mu_{PU}> = 140 \text{ or } 200$

Only truth-level MC information was generated for all samples since a full simulated MC campaign (including digitization and reconstruction) was too costly.

'Upgrade Performance Functions', developed using limited samples of full simulated MC that used ATLAS HL-LHC geometry, includes:

- resolutions (for smearing functions)
- reconstruction and trigger efficiency (including fake rates)
- pile-up jets for not hard-scatter truth events.

Analysis are then performed on the smeared truth MC samples.

Higgs self-coupling

- First opportunity to measure Higgs boson trilinear self-coupling λ_{HHH}
 - → strictly connected to the form of the Higgs potential.
- SM di-Higgs gives us access to λSM_{HHH}
 - \rightarrow deviation of λ_{HHH} / λ^{SM}_{HHH} from 1 would suggest new physics!
- SM di-Higgs production (~40 fb), mainly g-g fusion
 - three orders of magnitude smaller than single Higgs production (48 pb)

Signal Strength	
$\mu = \sigma^{HH}/\sigma^{HH}_{SM}$	

Branching ratio (%)	σ.Br (fb)	
33	12.9	
25	9.9	
7.4	2.9	
5.4	2.1	
3.1	1.2	
1.2	0.48	
0.3	0.12	
0.001	0.04	
	33 25 7.4 5.4 3.1 1.2 0.3	

Higgs self-coupling

$HH \rightarrow b\bar{b} b\bar{b}$

$3000 \text{ fb}^{-1}, <\mu_{PH}> = 200, 14 \text{ TeV}$

- Extrapolation from 2016 analysis (10 fb⁻¹), assuming same performance then Run 2.
- Signal Region (SR): 4 tagged b-jet.
- Effect of different trigger jet threshold studied (30 →75)
- Main background: QCD multi-jets (2016 analysis) Upper limit on μ = 1.5/5.2 (w/o or with 2016 syst.); it was 57 in Run 1 and 29 in Run 2

 $-0.2 (-3.5) < \lambda_{HHH} / \lambda^{SM}_{HHH} < 7 (11) 95\% C.L., no syst. (2016 syst.)$

$HH \rightarrow b\bar{b} \gamma\gamma$

- Photon performance based on upgraded Scoping Document.
- Most recent ITK layout for b-tagging.
- Main background: multi-jets + photons
 Significance: 1.052 σ (no syst.)

Self-coupling constraint: -0.8 < $\lambda_{HHH}/\lambda_{SM}$ < 7.7 (95% C.L. , no syst.)

ATL-PHYS-PUB-2016-024 ATLAS Preliminary (s = 14 TeV, L = 3000 fb⁻¹ SM non-resonant HH 10⁻¹ 10

m_{4i} [GeV]

Higgs self-coupling

3000 fb⁻¹, 14 TeV

$t\bar{t}HH \rightarrow WbWb \ b\bar{b}b\bar{b}$ with $<\mu_{PU}>=200$

- $\sigma(t\bar{t}HH) \sim 1 \text{ fb}$
- Final State: HH → bbbb tt → bblvqq
- SR(≥5 b jets): background from c-jets mis-tagged as b-jets from W → cs

Significance: $\sim 0.35 \sigma$ (no syst.)

→ small contribution to HH production

$HH \rightarrow b\bar{b}$ TT with $<\mu_{PU}> = 140$

- All τ decays combination used but not $\tau_{lep}\tau_{lep}$
- Different triggers for the channels $\tau_{had}\tau_{hah}$ and $\tau_{had}\tau_{lep}$
- Constraints on m(b̄b) m(ττ), 2% on lumi, 3% on Bck.
- Combining channels yields:

Significance: $\sim 0.60 \, \sigma$ (syst.) $\mu = 4.3$

-4 < $\lambda_{HHH}/\lambda_{SM}$ < 12 (95% C.L. with syst.)

ATL-PHYS-PUB-2016-023

ATL-PHYS-PUB-2015-046

Higgs couplings

Signal Strength $\mu = \sigma/\sigma_{SM}$

Projected accuracy of Higgs production rate measurements

ATL-PHYS-PUB-2014-016

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

Higgs couplings

Couplings relative to the SM values with (3000 fb⁻¹)

W, Z couplings ~3%μ coupling ~7%t,b,τ couplings 8-12%

Higgs rare decays

$3000 \text{ fb}^{-1}, <\mu_{PH}> = 140, 14 \text{ TeV}$

ATL-PHYS-PUB-2015-043

 $H \rightarrow J/\Psi(\rightarrow \mu^+\mu^-) \gamma$ (probe Higgs coupling to c-quark)

- Run-1 detector performances
- Multivariate analysis : p_T(γ), p_T(μ⁺μ⁻), μ⁺μ⁻ -and γ-isolation ½
- Select mass window $m(\mu^+\mu^-\gamma)$ in 115-135 GeV

BR (H \rightarrow J/ Ψ (-> $\mu\mu$) γ): 44⁺¹⁹₋₂₂ x 10⁻⁶ (95% C.L.) (no syst.)

SM Calculation: $2.9 \pm 0.2 \times 10^{-6}$ (Run-1 Limit: 1.5×10^{-3})

$H \rightarrow \mu^+ \mu^-$

- Low BR, high Z/γ* background, high mass resolution
- Analysis based on Run-1 with cut optimization
- Total background shape and normalization data-driven
- Select mass window: $m_{\mu+\mu}$ 122-128 GeV

Significance: 2.3 σ (300 fb⁻¹) 7.0 σ (3000 fb⁻¹)

 $\Delta\mu/\mu$: 46 % (300 fb⁻¹) 21 % (3000 fb⁻¹)

ATL-PHYS-PUB-2013-014

SUSY Searches at HL-LHC

ATLAS

- SUSY is one possible extension of the SM:
 - predicts new bosonic/fermionic partner for existing fermion/ bosons
 - lightest SUSY particle is stable (if R-parity conservation)
 - → DM candidate
 - cancel out quadratic divergences in the Higgs mass corrections in case of "light stop"
 - → can accommodate the gauge coupling unification.
- Minimal SUSY models predicts Higgs mass below 130 GeV
- Focus on HL-LHC benchmark studies:
 - 14 TeV, $\langle \mu_{PU} \rangle$ = 200, total integrated luminosity of 3000 fb⁻¹
 - upgrade ATLAS simulation
 - truth level particle corrected for detector effects

Direct stau pairs production

- Extend the ATLAS exclusion scenario of combined $\tilde{\tau}_L \tilde{\tau}_L$ and $\tilde{\tau}_R \tilde{\tau}_R$ production with χ^0_1 massless
- Cut based analysis tau decaying hadronically, large E_T^{Miss}, low jet activity
- Main background from W+jets and tt

Exclusion limit ($\tilde{\chi}^0_1$ massless):

- ---- 700 GeV in $\tilde{\tau}$ -mass for $(\tilde{\tau}_L \tilde{\tau}_L \text{ and } \tilde{\tau}_R \tilde{\tau}_R)$ combined production
- ---- 650 GeV for pure $\tilde{\tau}_L \tilde{\tau}_L$
- ---- **540** GeV for pure $\tilde{\tau}_R \tilde{\tau}_R$

5σ discovery sensitivity ($\tilde{\chi}^0_1$ massless):

- —— **100-500** GeV in $\tilde{\tau}$ -mass for $(\tilde{\tau}_L \tilde{\tau}_L)$ and $\tilde{\tau}_R \tilde{\tau}_R$ combined production
- **120-430** GeV for pure τ_Lτ_L
- \rightarrow No discovery sensitivity for pure $\tau_R \tau_R$ production

For stau mass of 200 GeV: \mathcal{L} $\sigma(\widehat{\tau}_L \widehat{\tau}_L) \sim 0.02 \text{ pb}$; $\sigma(\widehat{\tau}_R \widehat{\tau}_R) \sim 0.01 \text{ pb}$

ATL-PHYS-PUB-2016-021

Direct chargino/neutralino pair production

- Extend the present ATLAS sensitivity to electro-weakinos mass range $O(100 \text{ GeV}) \text{ with } <\mu_{PU}> = 140$
- Simplified model:
 - LSP $\tilde{\chi}_1^0$ massless
 - sleptons and sneutrino with high mass, SM Higgs
- Cut based and MVA analysis
- Main background: tt

Exclusion limit:

1310 GeV in mass $\tilde{\chi}^{\pm}_{1} \tilde{\chi}_{2}^{0}$ mass for massless χ_1^0

5σ discovery sensitivity:

950 GeV in mass $\chi^{\pm}_{1} \chi_{2}^{0}$ mass for massless $\tilde{\chi}_1^0$

 $\sigma^{\text{NLO}}(\widetilde{\chi^{\pm}_{1}}, \widetilde{\chi^{0}_{2}}) \sim 0.005 \text{ pb } (@ 500 \text{GeV})$

ATL-PHYS-PUB-2015-032

New heavy bosons and DM candidates at HL-LHC

- Improved statistics for high p_T events at HL-LHC.
- High mass signal ⇒ boosted top quark decays ⇒ highly collimated jets.
- Search relies on a good reconstruction of boosted objects.

Extend HL-LHC mass reach to m(Z') ~ 4 TeV.

ATLAS Run 1 mass constraint (20.3 fb-1): m(Z') > 2.1 TeV

ATL-PHYS-PUB-2017-002

Anomalous top decays at HL-LHC

ATLAS

- Highly suppressed in Standard Model (rates < 10⁻¹⁰).
- Detection would be sign of new physics.

ATL-PHYS-PUB-2016-019

- Expected sensitivity to FCNC top decays:
 - t→Zq (u or c) and t→Hq (u or c) in tt events

Expected upper 95% CL limits on FCNC top quark branching ratios (5-45 x 10⁻⁴ Run 1 results)

Uncertainties	t→Zq channels	t→Hq channels
statistics only	$(2.4 - 5.8) \cdot 10^{-5}$	(0.6-1.2)·10 ⁻⁴
statistics + systematics (A)	(12 - 41) · 10 ⁻⁵	(1.1 - 2.4) · 10 ⁻⁴
statistics + systematics (B)	$(8.3 - 24) \cdot 10^{-5}$	(1.1 - 2.4) · 10 ⁻⁴

- Systematics A from 8 TeV Run 1 MC to data comparisons.
- Systematics B account for improvements to dominant theoretical and background normalization uncertainties from HL-LHC statistics.
- Detector related systematics (different scenarios considered) can be neglected.

Conclusions

- HL-LHC will be a challenging environment for ATLAS
 (<μ_{PU}> ~ 200, large background/radiation, high trigger/data rates).
- Significant increase of statistics for the physics analysis is expected:
 - → improve sensitivity to higher mass particles and rare processes.
- Higgs, Exotics and SUSY physics program will profit of it:
 - → explore the *HH* production mechanism combining as many final states and production mechanisms as possible
 - → precise measurements of Higgs couplings
 - → extend the present/gain new sensitivities to heavy SUSY particles.
- Still a lot of space for improvements:
 - during 2017 the various sub-detector TDRs will be finalized; this could bring further detector/trigger capabilities
 - theoretical uncertainties expected to decrease with time.
 - better data-analysis techniques for background rejection will be available in Run 4.

BACKUP

LCH/ATLAS 2017 vs 2016

Events / Bin Width [GeV

ATLAS Detector Performance/2

ATLAS 2016 cross-section measurements

HL-LHC projection

Luminosity profile: ULTIMATE

After LS4, proton physics days increase from standard 160 days to 200 and after LS5 to 220

From 3000 fb⁻¹ to 4000 fb⁻¹

Ultimate scenario assume 5% higher efficiency that nominal Last run with 220 days and 5% higher efficiency: 440 fb-1/y

ATLAS Scoping Document layouts

	Scoping Scenarios			
Detector System	Reference (275 MCHF)	Middle (235 MCHF)	Low (200 MCHF)	
Inner Tracker				
Pixel Detector	$ \eta \le 4.0$	$ \eta \leq 3.2$	$ \eta \le 2.7$	
		✓	✓	
Barrel Strip Detector	✓	[No stub layer]	[No stereo in layers #2,#4] [Remove layer #3] [No stub layer]	
Endcap Strip Detector	1	[Remove 1 disk/side]	[Remove 1 disk/side]	
Calorimeters				
LAr Calorimeter Electronics	✓	✓	✓	
Tile Calorimeter Electronics	1	✓	✓	
Forward Calorimeter	1	×	X	
High Granularity Precision Timing Detector	1	X	X	

Analysis Techniques

ATLAS

ATLAS HL-LHC studies have to consider:

- upgraded ATLAS detector + trigger systems
- collision energy, $\sqrt{s} = 14 \text{ TeV}$
- high pile-up, $\langle \mu_{PU} \rangle$, of 140 or 200
- We use generator-level $\sqrt{s} = 14 \text{ TeV}$ Monte Carlo samples
- Overlay with jets from dedicated pile-up library
 - **pile-up library** contains fully simulated pile-up jets with $\langle \mu_{PU} \rangle = 140$ or 200
- Reconstruct electron, muons, jets, photons and missing- E_T from generator+overlay information
- To simulate the response of the detector:
 - \Rightarrow smear p_T and energy of reconstructed physics objects using *smearing functions*
 - → apply reconstruction efficiencies for electrons, muons and jets
- To emulate triggers: apply trigger efficiency functions
- Smearing and efficiency functions determined from fully-simulated samples using ATLAS HL-LHC detector and high pile-up
 - ightharpoonup Functions are dependent on p_T and η
- ullet Most analysis presented use single lepton or di-lepton triggers (e, μ)
 - \rightarrow di- τ triggers and 4-jet triggers used for particular analyses
- Parametrised *b*-tagging (based on ATLAS Run 1 MV1 tagger) is performed on reconstructed jets
- This approach to ATLAS HL-LHC prospects studies has been validated on a limited number of physics studies comparing full simulation and the generator-level+smearing technique

Level-0 Barrel trigger with the new inner layer + large η tagger

Events / 0.5 GeV

BI upgrade:

- 4th layer of new type RPC
- sMDT chambers
- → improve trigger acceptance
- → robustness against reduced efficiency on old RPC

Extend the muon acceptance from 2.7 to 4.0

- B-field integral becomes zero around η=3:
 no momentum measurement from muon system
- Muon "segment" tagger to be used with ITK
- Benchmark physics channels from SD:
 - 1. H→ 4I
 - 20% increase of acceptance
 - $\Delta \mu / \mu$: 2.4% => 2.2% (10% improvement)
 - Larger impact for differential distributions
 - 2. boson-boson scattering: W+W+ j j
 - same sign di-leptons
 - veto on 3rd lepton reduces WZ bkg by 50%

ATLAS performance @HL-LHC

Electron Performance

For Medium Selection: conversion ra. dropping from ~10% to 0,11 %

	Loose	Medium	Tight				
			1.6				
Identification Efficiency (%)							
Electrons	94.5±0.2	91.6±0.2	81.0±0.2				
Jet Fakes	6.2±0.4	2.7±0.2	1.09±0.16				
Hadrons	3.6±0.3	1.4±0.2	0.51±0.11				
Conversions	7±3	0.11±0.1	0.036 ± 0.008				
Heavy Flavour	vy Flavour 72±17		28±10				
Total Efficiency (%)							
Electrons	91.4±0.2	88.5±0.2	78.3±0.2				
Jet Fakes	0.147±0.009	0.064±0.006	0.026±0.004				

Photon Performance

Calorimeter-based photon identification

- $\varepsilon = 70\%$
- fake rate ~10⁻³

Using isolation $E_{r<0.2} < 6 \text{ GeV}$

- ϵ = 87%
 - fake rate ~ 10⁻⁴

Fat jet performance @HL-LHC

JET Performance

- Use of Fat Large (R=1.0,1.2) jets to identify boosted vector boson (V):
 - powerful discriminator between jets from V and multijets
 - strong dependence on pile-up
- combined trimming (fcut = 5% and Rsub = 0.2) and Jet Area subtraction restore the mass information

Luminosity region studies

- Luminous regions width (z-coordinate) σ_z =34,50 mm for $\langle \mu \rangle$ = 140, 200
- Largest dependence on the pile-up density (=avg. #collisions per mm)
 - track-to-vertex association: +50% in tracks from pile-up at highest pile-up density
 - jet vertex tagging: similar performances between $<\mu>=140$, $\sigma z=34$ mm and $<\mu>=200$, $\sigma_z=50$ mm but Jet resolution worse at higher $<\mu>$

Physics motivation for Phase II-Trigger upgrade

- Open question on the best way to explore hadronic final states
 - for example HH → bbbb

- General strategy
 - loosen Run-2 100 kHz L1 rate
 - access tracking information early

Isolated EM triggers associated with tracks

Isolated EM triggers

HIGGS

$HH \rightarrow b\bar{b} \gamma\gamma$

- Cut based with Scope Document performance for photons
- Most recent ITK layout for b-tagging
- SR: 9.5 signal, 91 total background

VBF Higgs production

Important analysis to motivate the high η extension of the ATLAS ITK layout

VBF Higgs production

3000 fb⁻¹, $<\mu_{PU}>$ = 200, 14 TeV

$H \rightarrow WW^* \rightarrow ev \mu v$

- Detector performances: Run-1 (e/ μ) and SD (jets, E_T^{Miss})
- Cut based: 2 forward jets ($|\eta| > 2$), $E_T^{Miss} > 20$ GeV
- Tracking coverage extension in eta
 → stat.+ syst. uncertainty reduction by 40%

 Z_0 : 8.0 (stat+syst) / 5.7 (stat. extrap. from Run1)

 $\Delta\mu$: 0.20 (stat+syst) / 0.14 (stat. extrap from Run-1)

ATL-PHYS-PUB-2016-018

$H \rightarrow ZZ^* \rightarrow 4I$

- 2 jets with m(jj) > 130 GeV
- 4 lepton consistent with h->ZZ*->4l
- Use BDT to separate ggF and VBF production
- Systematic uncertainty is from signal QCD scale only

 Z_0 : 10.2 (stat+syst) / 7.2 (stat. extrap. from Run1)

 $\Delta\mu$: 0.18 (stat+syst) / 0.15 (stat. extrap. from Run1)

ATL-PHYS-PUB-2016-008

Summary of Higgs results at HL-LHC

Channels	Result	HH final State	Significance Coupling limit			
VBF H->WW*	Δμ/μ ≃ 14 to 20%	HH \rightarrow bb $\gamma\gamma$ (stat)	$1.05~\sigma$ -0.8 < $\lambda_{HHH}/\lambda_{SM}$ < 7.7			
VBF H->ZZ*	Δμ/μ ≃ 15 to 18%	HH $\rightarrow \overline{b}b \tau^+\tau^-$ (stat+syst)	$0.6~\sigma$ -4.0 < $\lambda_{\text{HHH}}/\lambda_{\text{SM}}$ < 12.0			
ttH, H->γγ	Δμ/μ ≃ 17 to 20%	HH -> bbbb (stat+syst)	$-3.5 < \lambda_{HHH}/\lambda_{SM} < 11.0$			
VH, H→γγ	Δμ/μ~ 25 to 35%	ttHH, HH →bbbb	0.35 σ 			
H-> Zy	Δμ/μ ~ 30%	$H \rightarrow ZZ^* \rightarrow 4I$	$\Gamma_{H} = 4.2^{+1.5}_{-2.1} \text{MeV}$			
H->μ ⁺ μ ⁻	Δμ/μ ~ 15%	(m(4l)>220 GeV)	(stat.+syst.) Run-1: Γ _н < 22.7 MeV			
H-> J/ψ y	BR < 44 x 10 ⁻⁶ @ 95	% C.L.	ATL-PHYS-PUB-2015-024			

Higgs BSM constraints

ATL-PHYS-PUB-2011 CIC ATL-PHYS-PUB-2014-017

 $300, 3000 \text{ fb}^{-1}$ < μ_{PU} > = 140

Figure 4: Regions of the $(\cos(\beta-\alpha), \tan\beta)$ plane of four types of 2HDMs expected to be excluded by fits to the measured rates of Higgs boson production and decays. The confidence intervals account for a possible relative sign between different couplings. The expected likelihood contours where $-2\ln\Lambda=6.0$, corresponding approximately to 95% CL (2σ) , are indicated assuming the SM Higgs sector. The light shaded and hashed regions indicate the expected exclusions.

Higgs Width at HL-LHC

Measure off-shell production of $H \rightarrow ZZ^* \rightarrow 4\ell$ with $m(4\ell) > 220 \text{ GeV}$

Use $m(4\ell)$ shape and matrix element to discriminate between signal and background

- \rightarrow stat. uncertainties only: $\mu_{\text{off-shell}}=1.00^{+0.23}_{-0.27}$
- \Rightarrow stat.+syst. uncertainties: $\mu_{\text{off-shell}}=1.00^{+0.43}_{-0.50}$
- \bullet Off-shell production used to constrain the Higgs boson width Γ_H
- For $\Gamma = \Gamma_{SM}$ combining with on-shell measurement, (assuming off-shell measurement dominates):

$$\Gamma_{H}$$
= 4.2^{+1.5}_{-2.1} MeV (stat+sys)

• Run 1 limit: $\Gamma_{\rm H}$ < 22.7 MeV at 95% CL (*WW*, *ZZ*)

Higgs coupling K-Framework

ATL-PHYS-PUB-2014-016

- ullet Assuming $\Gamma_{
 m H}$ is sum of SM widths, calculate uncertainties on Higgs boson couplings.
- Deviations from the SM are quantified using κ multiplier, in SM κ_i = 1, e.g.: $\kappa_g^2 \cdot \kappa_\gamma^2 \cdot \kappa_H^2 \cdot$

ATLAS Simulation Preliminary

 Assume universal modifications to Higgs couplings to fermions (κ_F) and vector bosons (κ_V)

Exotic Searches Aug 2016

ATLAS Prelimin

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

1 TeV

 $\int \mathcal{L} \, dt = (3.2 - 20.3) \text{ fb}^{-1}$

Mass scale [TeV]

 $\sqrt{s} = 8, 13 \text{ T}$

	itaa, magaat 2010							IEV	$\int \mathcal{L} dt = (3)$.2 - 20.3) to -	$\sqrt{s} = 8$, 13 1
	Model	ℓ , γ	Jets†	E _T miss	∫£ dt[fb		Limit				Reference
Extra dimensions	ADD $G_{KK}+g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\to \ell q$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \to \ell\ell$ RS1 $G_{KK} \to \ell\ell$ RS1 $G_{KK} \to \psi W \to qq\ell v$ Bulk RS $G_{KK} \to WW \to qq\ell v$ Bulk RS $G_{KK} \to HH \to bbbb$ Bulk RS $g_{KK} \to tt$ 2UED / RPP		$\geq 1j$ - 1 j 2 j $\geq 2j$ $\geq 3j$ - 1 J 4 b $\geq 1 \text{ b, } \geq 1 \text{ J/}$ $\geq 2 \text{ b, } \geq 4$		3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	MD Ms Mth Mth Mth Mth Mth GKK mass GKK mass GKK mass KKK mass KK mass	1.24 360-860 GeV 1.		6.58 TeV TeV 2 TeV 8.7 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2 \\ n=3 \text{ HLZ} \\ n=6 \\ n=6 \\ n=6, M_D=3 \text{ TeV, rot BH} \\ n=6, M_D=3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ BR=0.925 \\ \text{Tier (1,1), BR}(A^{(1,1)}\rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qqqv \operatorname{model} \\ \operatorname{HVT} W' \to WZ \to qqqq \operatorname{model} \\ \operatorname{HVT} V' \to WH/ZH \operatorname{model} B \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \end{array}$		- 2 b - 1 J 2 J 2 b, 0-1 j ≥ 1 b, 1 J	Yes Yes - Yes	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass Z' mass Z' mass W' mass		4.05 Te 2.02 TeV 5 TeV 4.74 2.4 TeV 3.0 TeV 2.31 TeV 1.92 TeV 1.76 TeV		$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
Cl	CI qqqq CI ℓℓqq CI uutt	– 2 e, μ 2(SS)/≥3 e,μ	2 j - ∡ ≥1 b, ≥1 j	- - Yes	15.7 3.2 20.3	Λ Λ		4.9	TeV	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
DM	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ\chi\chi$ EFT (Dirac DM)		$\begin{array}{c} \geq 1j\\ 1j\\ 1J, \leq 1j \end{array}$	Yes Yes Yes	3.2 3.2 3.2	m _A m _A	1.0 TeV 710 GeV 550 GeV			$\begin{array}{l} g_q \! = \! 0.25, \; g_\chi \! = \! 1.0, \; m(\chi) < 250 \; {\rm GeV} \\ g_q \! = \! 0.25, \; g_\chi \! = \! 1.0, \; m(\chi) < 150 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 Te 1.05 Te\ 640 GeV	4 I		$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
Heavy quarks	VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ VLQ $QQ \rightarrow WqWq$ VLQ $T_{5/3}T_{5/3} \rightarrow WtWt$	1 e, μ	$\geq 2 \text{ b}, \geq 3$ $\geq 1 \text{ b}, \geq 3$ $\geq 2 \text{ b}, \geq 3$ $\geq 2/\geq 1 \text{ b}$ $\geq 4 \text{ j}$ $u \geq 1 \text{ b}, \geq 1 \text{ j}$	j Yes j Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 990 GeV			T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1 γ - - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j –	- - - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass q* mass b* mass b* mass v* mass		2.3 TeV 5 TeV 3.0 TeV	eV 5.6 TeV	only u^* and d^* , $\Lambda=m(q^*)$ only u^* and d^* , $\Lambda=m(q^*)$ $f_g=f_L=f_R=1$ $\Lambda=3.0~{\rm TeV}$ $\Lambda=1.6~{\rm TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ - -	- 2 j - 1 b - -	Yes Yes	20.3 20.3 13.9 20.3 20.3 20.3 7.0	a _T mass N ⁰ mass H ^{±±} mass H ^{±±} mass spin-1 invisible particle mass multi-charged particle mass monopole mass		2.0 TeV		$\begin{split} m(W_R) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, BR}(H_L^{\pm\pm} \to \text{ee}) = 1 \\ \text{DY production, BR}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ a_{\text{non-res}} &= 0.2 \\ \text{DY production, } q &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059

Exotic Searches July 2017

1 TeV

Mass scale [TeV]

Stop pair production

Long-lived

- R-Parity conservation SUSY model.
- Cut based analysis, top decaying leptonically
- Final state with 2 b-jets, leptons and E_T^{Miss}
- Small mass splitting among stop and neutralino → ISR jets to boost the stop-system

Charged

Stop pair production in Run2

