

Fundación **BBVA**

Hunting New Physics with ATLAS

Vasiliki A. Mitsou for the ATLAS Collaboration

6th International Conference on New Frontiers in Physics ICNFP 2017

17 – 29 August 2017, Kolymbari, Crete, Greece

0.0

G fitter sm

Why going beyond the Standard Model?

SM provides an excellent description of the experimental data so far

- QCD and hadronic structure
- precision EW physics
- top quark
- flavour physics

yet... it does not provide an answer to:

- hierarchy / fine tuning problem
- matter-antimatter asymmetry
- dark matter & dark energy
- neutrino masses
- unification of EW interactions & QCD
- gravitation
- more than one fermion generation

An extension of the Standard Model is needed

(some) ideas beyond Standard Model

Snowmass 2013 Summary Paper

ATLAS at the LHC

- Spectacular LHC performance
- Run 2: 2015 ongoing
 - □ **v**s = 13 TeV
 - 2015-2016: ~40 fb⁻¹ pp collisions recorded by ATLAS
 - □ 2017: ~16 fb⁻¹ recorded so far

Beyond-SM searches strategy

- Pursue signature-driven analyses:
 - resonances: dileptons, jets, photons, ...
 - non-resonant: tails in kinematic distributions
 - special particles: slow-moving, long-lived, ...
 - · ...
- Search for excess of events over the expected SM background
 - in one or more Signal Regions (SRs)
- If no significant excess is observed
 - set cross-section upper limits
 - interpret in specific models to obtain limits on masses, couplings, ...
- Background estimate: data-driven techniques for main; MC for smaller
 - measurement with data in Control Regions (CRs), extrapolated to SRs
 - method validated in Validation Regions (VRs)
- Blind analysis: first define and validate analysis, then open signal box

Signatures probing models

Resonances

- dileptons: $Z' \rightarrow \ell \ell$, ...
- $W' \rightarrow \ell V$
- dibosons: WW, WZ, γγ, ...
- top/bottom: VLQs
- BSM Higgs, ...

Pawel Bruckman's talk

- leptons+jets: leptoquarks, ...
- dijets

Non-resonant final states

- dileptons
- leptons+jets
- mono-X + E_T^{miss}, dark matter,
- ···

Long-lived particles

- high ionisation
- disappearing tracks
- displaced lepton jets, vertices

Signature-based searches cover multitude of theoretical scenarios

Yoram Rozen's talk

Cristiano Sebastiani 's poster

See talks by:

- SUSY-specific signatures: $E_T^{miss} + X \rightarrow Andre Sopczak$
 - strong production
 - 3rd-generation squarks
 - electroweak production

- >Shunsuke Adachi
- ➤ Nicolas Koehler
- ➤ Athina Kourkoumeli

· . .

Looking for resonances & tails in distributions

- Non-SUSY searches only presented here
- Detailed reviews for SUSY in other talks

Dileptons (1/3)

36.1 fb⁻¹ @ 13 TeV

- Selection
 - 2 opposite-sign (OS) isolated electrons OR muons with p_T > 30 GeV
- Background
 - Drell-Yan (DY), diboson, top (pair & single)
 - DY fitted to data at Z-peak
 - fakes (QCD jets & W+jets) → data-driven
 matrix method
- Reconstruction of dilepton invariant mass
 m_{pp}
- Looking for narrow resonances OR broad excesses in the invariant mass distribution
- Data consistent with SM expectation

Dileptons (2/3)

- Z' resonances: spin-1 neutral gauge bosons
 - Sequential SM (SSM): Z' with same couplings as SM Z
 - GUT models based on E_6 gauge group predict two additional U(1) gauge fields: Z'_{ψ} , Z'_{χ}
 - observable as narrow resonances in dilepton invariant mass spectrum

Contact Interactions (CI)

 probes quark and lepton compositeness, with binding energy scale Λ

- different chiral structures considered
- detectable as broad excess in dilepton invariant mass spectrum

36.1 fb⁻¹ @ 13 TeV

Dileptons (3/3)

- Minimal Z' models are characterized by three parameters:
 - Z' boson mass
 - γ': strength of Z' boson coupling relative to SM Z
 - θ_{Min} : mixing angle between the generators of B-L (Baryon minus Lepton number) and the weak hypercharge gauge groups

	γ'	$ an heta_{ m Min}$	Lower limits on $M_{Z'_{\text{Min}}}$ [TeV]					
Model			ee		$\mu\mu$		$\overline{\ell\ell}$	
			Obs	Exp	Obs	Exp	Obs	Exp
Z_χ'	$\sqrt{\frac{41}{24}}\sin heta_{ m Min}$	$-\frac{4}{5}$	3.7	3.7	3.4	3.3	3.9	3.8
Z_{3R}^{\prime}	$\sqrt{\frac{5}{8}}\sin\theta_{ m Min}$	-2	4.0	3.9	3.6	3.6	4.1	4.1
Z'_{B-L}	$\sqrt{\frac{25}{12}}\sin\theta_{\mathrm{Min}}$	0	4.0	4.0	3.6	3.6	4.2	4.1

• Also obtained generic upper limits on visible σ in fiducial lepton p_T & η and mass-window for various widths (not shown here)

Diphotons

- Search for heavy resonant and non-resonant BSM physics decaying into diphoton final states
- Event selection
 - \sim ≥ 2 isolated photons with E_T > 40 GeV & 30 GeV
 - different kinematic selections applied for spin-0 vs. spin-2
 - narrow-width approximation (NWA) bump in m_{γγ}
 - non-resonant: counting experiment for $m_{yy} > 2240 \text{ GeV}$

 No significance excess observed up to diphoton masses of 2.7 TeV

36.7 fb⁻¹ @ 13 TeV

arXiv:1707.04147

Limits set in various scenarios

- Spin-0 resonance: exclusion limits for NWA signal σ×BR(γγ) range from 11.4 fb @200 GeV to about 0.1 fb @ 2.7 TeV
- Spin-2 resonance: Randall-Sundrum (RS) graviton with k/M_{Pl}=0.1 excluded below m_{G*}=4.1 TeV
- Spin-2 non-resonant: lower limit on M_S placed between
 5.7 TeV and 8.6 TeV on ADD model depending on formalism used and number of extra dimension assumed

Dibosons: $V' \rightarrow VH \rightarrow q\bar{q}^{(')}b\bar{b}$

(1/2)

- Search for boosted heavy resonances decaying to VH in all-hadronic channel
 - final state composed of two large-R jets, J
 - narrow-width bumps at di-jet (m_{JJ}) invariant mass for $m_{JJ} > 1$ TeV
- Event selection
 - lepton veto; E_T^{miss} veto
 - $^{\Box}$ ≥ 2 large-R jets with p_T > 250 GeV; leading p_T > 450 GeV
 - larger mass is H-jet; smaller is V-jet
 - W/Z and H mass window
- Background estimated by side band and/or no-b-tag
- → Data compatible with SM hypothesis Largest deviation in ZH channel at $m_{JJ} \approx 3$ TeV with local (global) significance of 3.3σ (2.1σ)

36.1 fb⁻¹ @ 13 TeV

m_{w'} [GeV]

Dibosons: $V' \rightarrow VH \rightarrow q\bar{q}^{(')}b\bar{b}$

- Candidate signal models:
 - Heavy Vector Triplet (HVT) W' and Z'
 - Model A: comparable BRs to fermions and gauge bosons
 - Model B: suppressed couplings to fermions
- Upper limits on $\sigma \times BR$ set for W' and Z' resonances:
 - HVT Model B resonances excluded in mass range 1100 -2500 GeV for WH, and 1100 - 2600 GeV for ZH
 - HVT Model A resonances excluded in mass range 1100 -2400 GeV for WH, and 1100 - 1480 GeV and 1700 - 2350 for ZH

WH) \times B(H \rightarrow b \overline{b} +c \overline{c}) [pb] Observed limit **ATLAS Expected limit** \sqrt{s} = 13 TeV 36.1 fb⁻¹ Expected $\pm 1 \sigma$ Expected $\pm 2 \sigma$ HVT Model B, g_=3 10^{-1} HVT Model A, g, =1 10⁻² ⋛ 2500 3000 3500 1500 2000

Note: there is a ~60% overlap of data between the WH and ZH selections, for both 1-tag and 2-tag regions

[qd] (<u>⊃</u>>+gq Observed limit **ATLAS** Expected limit $\sqrt{s} = 13 \text{ TeV } 36.1 \text{ fb}^{-1}$ Expected $\pm 1 \sigma$ Expected $\pm 2 \sigma$ ZH) × B(H HVT Model B, g, =3 10⁻¹ HVT Model A, g_=1 ↑ 10⁻² <u>ස</u> 10⁻³ 1500 2000 2500 3500 3000 m_{z'} [GeV]

arXiv:1707.06958

Dibosons: $X \to WV \to \ell vq\bar{q}$

36.1 fb⁻¹ @ 13 TeV

- Motivation:
 - Spin 0: Composite Higgs (ggF or VBF)
 - Spin 1: Heavy Vector Triplet (qq̄ or VBF)
 - Spin 2: RS graviton (ggF production)
- Consider both resolved (jj) and "merged" (J), if highly boosted, dijet system
- Events categorisation:
 - VBF or DY (includes ggF & qq̄)
 - (i) merged high purity (HP);
 - (ii) merged low purity (LP); (iii) resolved
 - WW or WZ (overlap)
- Search for bump in $m(\ell vjj)$ or $m(\ell vJ)$ distributions
- No significance excess observed
- ⇒ limits set in resonance masses for considered models

ATLAS-CONF-2017-051

Excluded	HVI		RSG_{KK}					
Masses	Model A	Model B	$k/\bar{M}_{\rm Pl} = 1.0$					
Observed	<2750 GeV	<3090 GeV	<1760 GeV					
Expected	<2840 GeV	<3230 GeV	<1750 GeV					
WZ Selection								
Excluded	Н							
Masses	Model A	Model B						
Observed	<2820 GeV	<2980 GeV						
Expected	<2890 GeV	<3240 GeV						

WW Selection

DC C

Dibosons – summary

σ×BR upper limits for Heavy Vector Triplets decaying to dibosons for different final states

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/

Vector-Like Quarks (VLQs): T→Wb

- VLQs proposed to cancel quadratic divergences in Higgs mass
- Predicted in Little/Composite Higgs
- Production: pair (QCD) or single (EW)
- Decays:
 - $\neg T \rightarrow Wb / Zt / Ht$
 - $^{\Box}$ B \rightarrow Wt / Zb / Hb

- ≥ 1 W-tagged large-R jet, no overlap with b-jet
- Full event reconstruction by minimising |Δm_T|
- Profile likelihood fit to improve BG modelling
 - □ $\Delta R(\ell, v)$ & S_T cut to define SR/CR
 - discriminating variable: $\mathbf{m}_{\tau}^{\text{lep}}$

36.1 fb⁻¹ @ 13 TeV

No significant deviation from SM expectation is observed

A TOWNSON

Uncertainties

- 36.1 fb⁻¹ @ 13 TeV
- dominated by low statistics
- main systematics: t & tt modelling
- Significantly improved limits w.r.t. Run I
 - $^{\circ}$ $m_{T/Y}$ (BR_{Wb}=100%) > 1350 (782) GeV
 - □ m_T (singlet) > 1170 GeV
 - $m_{B/X}$ (BR_{Wt}=100%) > 1250 GeV
 - m_B (singlet) > 1180 GeV

arXiv:1707.03347

VLQ summary

- All decays of vector-like T quark considered: Wb / Zt / Ht
- Vector-like B decays not yet fully covered: only Wt / Hb included
- Analyses make use of boosted decays at 13 TeV

... in a nutshell

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

[†]Small-radius (large-radius) jets are denoted by the letter j (J).

Long-lived particles

- Most recent results @ 13 TeV presented here
- Searches for supersymmetric particles
- Many more searches for non-SUSY are underway with 13 TeV data

onger lifetime

Stable or metastable particles

- Long-lived decays of spartners possible in several frameworks, including
 - nearly conserved symmetry
 - e.g. long lived gluinos or squarks that hadronise before decaying
 → R-hadrons in Split SUSY
 - low coupling between the particle and the final state
 - e.g. weak R-parity violating (RPV) couplings in SUSY
 - mass degeneracy between the particle and the final state
- Depending on the lifetime, different detection techniques involving various objects: tracks, photons, leptons, ...

Displaced vertices (1/2)

- Metastable particles decaying in the Inner Detector
 - predicted in models of RPV SUSY or split-SUSY
 - benchmark signal: gluino hadronising into an R-hadron

32.7 fb⁻¹ @ 13 TeV

- Large-radius tracking: re-running standard track and vertex reconstruction improves signal efficiency at large radii
- Backgrounds: instrumental and estimated from data
 - high track multiplicity hadronic interactions
 - ➤ DV in regions with high material density vetoed
 - merged DV extrapolated from low-n_{trk} region
- Background estimate validated in signal-depleted regions

ATLAS-CONF-2017-026

ICNFP 2017 V.A. Mitsou

Displaced vertices (2/2)

- SR defined as a DV with mass > 10 GeV and high track multiplicity (> 5 tracks)
- No event is observed in the SR, compatible with a bkg. expectation of 0.2±0.2 events

32.7 fb⁻¹ @ 13 TeV

ATLAS-CONF-2017-026

- Limits are set on gluino R-hadrons as a function of masses and lifetime
- For a lifetime of 1 ns, gluino masses up to 2.2 TeV are excluded

Disappearing track (1/2)

- Decays to invisible products in the Inner Detector
 - chargino and neutralino nearly degenerate, the soft pions in the decay are not reconstructed
 - for wino LSP generic prediction of ~160 MeV splittings,
 or lifetimes of ~0.2 ns ➤ 6 cm
- Pixel tracklets (≡ pixel-only tracks): 10× increase in acceptance over standard tracks for low lifetimes
- Backgrounds estimated by a simultaneous fit to the tracklet p_T distribution

Background configurations

ICNFP 2017 V.A. Mitsou

Disappearing track (2/2)

- No significant excess is observed
- 36.1 fb⁻¹ @ 13 TeV
- EWK production limits significantly improved at low lifetimes ($c\tau \lesssim 12$ cm)
 - thanks to new insertable pixel B-layer (IBL)
 installed during long shutdown (r ~ 3 cm)
- Strong production: reaching 1.4 (1.1) TeV in chargino mass for lifetimes of 1.0 (0.2) ns

Long-lived particles in SUSY - summary

8-TeV results on R-hadrons

Split SUSY with metastable $\tilde{g} \rightarrow g/qq \tilde{\chi}_1^0$

Summary 8-TeV & 13 TeV on disappearing track

Long lived chargino, $\tilde{\chi}_1^{\pm} \rightarrow \pi^{\pm} \tilde{\chi}_1^{0}$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/

Summary

- Standard Model limitations imperatively call for Physics beyond it, extending and complementing it
- ATLAS has searched for physics BSM at TeV scale in a variety of signatures inspired by a multitude of theoretical scenarios
- No significant deviation from SM expectations observed so far
- LHC Run 2 new data may reveal hints of New Physics
 - ATLAS is well-prepared to make the most of them
 - analysis continuously improved with new trigger and/or reconstruction techniques

Continuously updated public results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Thank you for your attention!

