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Problem of scales

describe high energy (SUSY?) extension of the Standard Model

unification of all fundamental interactions

incorporate Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

describe possible accelerated expanding phase of our universe

models of inflation (approximate de Sitter)

=> 3 very different scales besides MPlanck :

✲
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Problem of scales

✲

DarkEnergy

meV

ElectroWeak

TeV

Inflation

MI

QuantumGravity

MPlanck

1 they are independent

2 possible connections

MI could be near the EW scale, such as in Higgs inflation

but large non minimal coupling to explain

MPlanck could be emergent from the EW scale

in models of low-scale gravity and TeV strings

What about MI? can it be at the TeV scale?

Can we infer MI from cosmological data?
I.A.-Patil ’14 and ’15

connect inflation and SUSY breaking scales
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Inflation in supergravity: main problems

slow-roll conditions: the eta problem => fine-tuning of the potential

η = V ′′/V , VF = eK (|DW |2 − 3|W |2)

K : Kähler potential, W : superpotential

canonically normalised field: K = XX̄ => η = 1 + . . .

trans-Planckian initial conditions => break validity of EFT

no-scale type models that avoid the η-problem

stabilisation of the (pseudo) scalar companion of the inflaton

chiral multiplets => complex scalars

moduli stabilisation, de Sitter vacuum, . . .
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Starobinsky model of inflation

L =
1

2
R + αR2

Lagrange multiplier φ => L = 1
2(1 + 2φ)R − 1

4αφ
2

Weyl rescaling => equivalent to a scalar field with exponential potential:

L =
1

2
R − 1

2
(∂φ)2 − M2

12

(

1− e
−
√

2
3
φ
)2

M2 =
3

4α

Note that the two metrics are not the same

supersymmetric extension:

add D-term RR̄ because F-term R2 does not contain R2

=> brings two chiral multiplets
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SUSY extension of Starobinsky model

K = −3 ln(T + T̄ − CC̄ ) ; W = MC (T − 1

2
)

T contains the inflaton: ReT = e

√

2
3
φ

C ∼ R is unstable during inflation

=> add higher order terms to stabilize it

e.g. CC̄ → h(C , C̄ ) = CC̄ − ζ(CC̄ )2 Kallosh-Linde ’13

SUSY is broken during inflation with C the goldstino superfield

→ model independent treatment in the decoupling sgoldstino limit

=> minimal SUSY extension that evades stability problem [9]
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Non-linear supersymmetry => goldstino mode χ

Volkov-Akulov ’73

Effective field theory of SUSY breaking at low energies

Analog of non-linear σ-model => constraint superfields

Rocek-Tseytlin ’78, Lindstrom-Rocek ’79, Komargodski-Seiberg ’09

Goldstino: chiral superfield XNL satisfying X 2
NL = 0 =>

XNL(y) =
χ2

2F
+
√
2θχ+ θ2F yµ = xµ + iθσµθ̄

= FΘ2 Θ = θ +
χ√
2F

LNL =

∫

d4θXNLX̄NL −
1√
2κ

{
∫

d2θXNL + h.c .

}

= LVolkov−Akulov

R-symmetry with [θ]R = [χ]R = 1 and [X ]R = 2 F = 1√
2κ

+ . . .
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Non-linear SUSY in supergravity
I.A.-Dudas-Ferrara-Sagnotti ’14

K = −3 log(1− XX̄ ) ≡ 3XX̄ ; W = f X +W0 X ≡ XNL

=> V =
1

3
|f |2 − 3|W0|2 ; m2

3/2 = |W0|2

V can have any sign contrary to global NL SUSY

NL SUSY in flat space => f = 3m3/2Mp

R-symmetry is broken by W0

Dual gravitational formulation: (R− 6W0)
2 = 0 I.A.-Markou ’15

տ
chiral curvature superfield

Minimal SUSY extension of R2 gravity
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Non-linear Starobinsky supergravity [6]

K = −3 ln(T + T̄ − XX̄ ) ; W = M XT + f X +W0 =>

L =
1

2
R− 1

2
(∂φ)2−M2

12

(

1− e
−
√

2
3
φ
)2

−1

2
e
−2

√

2
3
φ
(∂a)2 − M2

18
e
−2

√

2
3
φ
a2

axion a much heavier than φ during inflation, decouples:

mφ = M
3 e

−
√

2
3
φ0 << ma =

M
3

inflation scale M independent from NL-SUSY breaking scale f

=> compatible with low energy SUSY

however inflaton different from goldstino superpartner

also initial conditions require trans-planckian values for φ (φ > 1) [15]
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Inflation from supersymmetry breaking
I.A.-Chatrabhuti-Isono-Knoops ’16, ’17

Inflaton : goldstino superpartner in the presence of a gauged R-symmetry

linear superpotential W = f X => no η-problem

VF = eK
(

|DW |2 − 3|W |2
)

= eK
(

|1 + KXX |2 − 3|X |2
)

|f |2 K = XX̄

= e|X |2 (1− |X |2 +O(|X |4
)

|f |2 = O(|X |4) => η = 0 + . . .

inflation around a maximum of scalar potential (hill-top) => small field

no large field initial conditions

gauge R-symmetry: (pseudo) scalar absorbed by the U(1)R

vacuum energy at the minimum: tuning between VF and VD
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Two classes of models

Case 1: R-symmetry is restored during inflation (at the maximum)

Case 2: R-symmetry is (spontaneously) broken everywhere

(and restored at infinity)

example: toy model of SUSY breaking [15] [24]
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Case 1: R-symmetry restored during inflation

K(X , X̄ ) = κ−2XX̄ + κ−2A (XX̄ )2 A > 0

W (X ) = κ−3fX =>

f (X ) = 1 (+β lnX to cancel anomalies but β very small)

V = VF + VD

VF = κ−4f 2eXX̄(1+AXX̄)

[

−3XX̄ +

(

1 + XX̄ (1 + 2AXX̄ )
)2

1 + 4AXX̄

]

VD = κ−4q
2

2

[

1 + XX̄ (1 + 2AXX̄ )
]2

Assume inflation happens around the maximum |X | ≡ ρ ≃ 0 =>
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Case 1: predictions

slow-roll parameters

η =
1

κ2

(

V ′′

V

)

= 2

(−4A+ x2

2 + x2

)

+O(ρ2) q = fx

ǫ =
1

2κ2

(

V ′

V

)2

= 4

(−4A+ x2

2 + x2

)2

ρ2 +O(ρ4) ≃ η2ρ2

η small: for instance x ≪ 1 and A ∼ O(10−1)

inflation starts with an initial condition for φ = φ∗ near the maximum

and ends when |η| = 1

=> number of e-folds N =

∫ start

end

V

V ′ = κ

∫

1√
2ǫ
≃ 1

|η∗|
ln

(

ρend
ρ∗

)
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Case 1: predictions

amplitude of density perturbations As =
κ4V∗
24π2ǫ∗

=
κ2H2

∗
8π2ǫ∗

spectral index ns = 1 + 2η∗ − 6ǫ∗ ≃ 1 + 2η∗

tensor− to− scalar ratio r = 16ǫ∗

Planck ’15 data : η ≃ −0.02, As ≃ 2.2× 10−9, N >∼ 50

=> r <∼ 10−4, H∗ <∼ 1012 GeV

Question: can a ‘nearby’ minimum exist with a tiny +ve vacuum energy?

Answer: Yes in a ‘weaker’ sense: perturbative expansion [11]

valid for the Kähler potential but not for the slow-roll parameters

generic V (not fine-tuned) => 10−9 <∼ r <∼ 10−4, 1010 <∼ H∗ <∼ 1012 GeV [30]
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impose independent scales: proceed in 2 steps

1 SUSY breaking at mSUSY ∼ TeV

with an infinitesimal (tuneable) positive cosmological constant

Villadoro-Zwirner ’05

I.A.-Knoops, I.A.-Ghilencea-Knoops ’14, I.A.-Knoops ’15

2 Inflation connected or independent? [4] [7] [24]
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Toy model for SUSY breaking

Content (besides N = 1 SUGRA): one vector V and one chiral multiplet S

with a shift symmetry S → S − icω ← transformation parameter

String theory: compactification modulus or universal dilaton

s = 1/g2 + ia ← dual to antisymmetric tensor

Kähler potential K : function of S + S̄

string theory: K = −p ln(S + S̄)

Superpotential: constant or single exponential if R-symmetry W = aebS

∫

d2θW invariant b < 0 => non perturbative

can also be described by a generalized linear multiplet [21]
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Scalar potential

VF = a2e
b
l lp−2

{

1

p
(pl − b)2 − 3l2

}

l = 1/(s + s̄)

Planck units

• b > 0 => SUSY local minimum in AdS space with l = b/p

• b ≤ 0 => no minimum with l > 0 (p ≤ 3)

but interesting metastable SUSY breaking vacuum

when R-symmetry is gauged by V allowing a Fayet-Iliopoulos (FI) term:

VD = c2l(pl − b)2 for gauge kinetic function f (S) = S

• b > 0: V = VF + VD SUSY AdS minimum remains

• b = 0: SUSY breaking minimum in AdS (p < 3)

• b < 0: SUSY breaking minimum with tuneable cosmological constant Λ
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Scalar potential for b = 0

V = a2(p − 3)lp + c2p2l3

can be obtained for p = 2 and l the string dilaton:

all geometric moduli fixed by fluxes in a SUSY way

D-term contribution : D-brane potential (uncancelled tension)

F-term contribution : tree-level potential (away from criticality)

String realisation : framework of magnetised branes
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minimisation and spectrum

Minimisation of the potential: V ′ = 0, V = Λ

In the limit Λ ≈ 0 (p = 2) => [26]

b/l = ρ ≈ −0.183268 => 〈l〉 = b/ρ

a2

bc2
= 2 e−ρ

ρ
(2−ρ)2

2+4ρ−ρ2
+O(Λ) ≈ −50.6602 => c ∝ a

Physical spectrum:

massive dilaton, U(1) gauge field, Majorana fermion, gravitino

All masses of order m3/2 ≈ eρ/2la ← TeV scale
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[24]
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Properties and generalizations

Metastability of the ground state: extremely long lived

l ≃ 0.02 (GUT value αGUT /2) m3/2 ∼ O(TeV ) =>

decay rate Γ ∼ e−B with B ≈ 10300

Add visible sector (MSSM) preserving the same vacuum

matter fields φ neutral under R-symmetry

K = −2 ln(S + S̄) + φ†φ ; W = (a +WMSSM)ebS

=> soft scalar masses non-tachyonic of order m3/2 (gravity mediation)

Toy model classically equivalent to [16]

K = −p ln(S + S̄) + b(S + S̄) ; W = a with V ordinary U(1)

Dilaton shift can be identified with B − L ⊃ matter parity (−)B−L
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Properties and generalizations

R-charged fields needed for anomaly cancellation

A simple (anomaly free) variation: f = 1 and p = 1

tuning still possible but scalar masses of neutral matter tachyonic

possible solution: add a new field Z in the ‘hidden’ SUSY/ sector

=> one extra parameter

alternatively: add an S-dependent factor in Matter kinetic terms

K = − ln(S + S̄) + (S + S̄)−ν
∑

ΦΦ̄ for ν >∼ 2.5

or the B − L unit charge of SM particles => similar phenomenology

distinct features from other models of SUSY breaking and mediation

gaugino masses at the quantum level

=> suppressed compared to scalar masses and A-terms
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Typical spectrum

20 25 30 35 40 45
m32 HTeVL

5
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30

35

TeV

The masses of sbottom squark (yellow), stop (black), gluino (red), lightest

chargino (green) and lightest neutralino (blue) as a function of the gravitino

mass. The mass of the lightest neutralino varies between ∼ 40 and 150 GeV [15]
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Case 2 example: toy model of SUSY breaking
I.A.-Chatrabhuti-Isono-Knoops ’16

Can the dilaton be the inflaton in the simple model of SUSY breaking

based on a gauged shift symmetry?

the only physical scalar left over, partner (partly) of the goldstino

partly because of a D-term auxiliary component

Same potential cannot satisfy the slow roll condition |η| = |V ′′/V | << 1

with the dilaton rolling towards the Standard Model minimum

=> need to create an appropriate plateau around the maximum of V [20]

without destroying the properties of the SM minimum

=> study possible corrections to the Kähler potential

only possibility compatible with the gauged shift symmetry
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Extensions of the SUSY breaking model

Parametrize the general correction to the Kähler potential:

K = −pκ−2 log

(

s + s̄ +
ξ

b
F (s + s̄)

)

+ κ−2b(s + s̄)

W = κ−3a , f (s) = γ + βs

P = κ−2c

(

b − p
1 + ξ

b
F ′

s + s̄ + ξ
b
F

)

Three types of possible corrections:

perturbative: F ∼ (s + s̄)−n , n ≥ 0

non-perturbative D-brane instantons: F ∼ e−δ(s+s̄) , δ > 0

non-perturbative NS5-brane instantons: F ∼ e−δ(s+s̄)2 , δ > 0

Only the last can lead to slow-roll conditions with sufficient inflation
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Slow-roll inflation

F = ξeαb
2φ2

with φ = s + s̄ = 1/l => two extra parameters α < 0, ξ

they control the shape of the potential

slow-roll conditions: ǫ = 1/2(V ′/V )2 << 1, |η| = |V ′′/V | << 1

=> allowed regions of the parameter space with |ξ| small

additional independant parameters: a, c , b

SM minimum with tuneable cosmological constant Λ: V ′ = 0, V = Λ ≈ 0

ξ = 0 => bφmin = ρ0,
a2

bc2
= λ0 with ρ0, λ0 calculable constants [19]

b controls φmin ∼ 1/gs choose it of order 10

tuning determines a in terms of c overall scale of the potential

ξ 6= 0 => ρ0, λ0 become functions l(ξ, α), λ(ξ, α)

numerical analysis => mild dependence
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ξ = 0.025, α = −4.8, p = 2, b = −0.018
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Fit Planck ’15 data and predictions

p = 1: similar analysis =>

φ∗ = 64.53, ξ = 0.30, α = −0.78, b = −0.023, c = 10−13

N ns r As

889 0.959 4× 10−22 2.205 × 10−9

SM minimum: 〈φ〉 ≈ 21.53, 〈m3/2〉 = 18.36 TeV, 〈MAµ
〉 = 36.18 TeV

During inflation:

H∗ = κ
√

V∗/3 = 5.09 TeV, m∗
3/2 = 4.72 TeV, M∗

Aµ
= 6.78 TeV

Low energy spectrum essentially the same with ξ = 0:

m2
0 = m2

3/2 [−2 + C] , A0 = m3/2 C, B0 = A0 −m3/2

C = 1.53 vs at ξ = 0: C0 = 1.52, m0
3/2 = 17.27, although 〈φ〉0 ≈ 9.96 [11]
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Conclusions

Challenge of scales: at least three very different (besides MPlanck)

electroweak, dark energy, inflation, SUSY?

their origins may be connected or independent

SUSY� with infinitesimal (tuneable) +ve cosmological constant

interesting framework for model building incorporating dark energy

identify inflaton with goldstino superpartner

inflation at the SUSY breaking scale (TeV?)

General class of models with inflation from SUSY breaking:

(gauged) R-symmetry restored (case 1) or broken (case 2) during inflation

small field, avoids the η-problem, no (pseudo) scalar companion
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