Gauge Theories

and

Non-Commutative Geometry

A Review

Orthodox Academy of Crete

Colymbari, August 2017

John Iliopoulos

ENS Paris

 \blacktriangleright Short distance singularities.

```
Heisenberg → Peierls → Pauli → Oppenheimer → Snyder
```
K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

 \triangleright Short distance singularities.

```
Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
```
K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 \blacktriangleright External fluxes.

Landau (1930) ; Peierls (1933)

 \triangleright Short distance singularities.

```
Heisenberg → Peierls → Pauli → Oppenheimer → Snyder
```
 \blacktriangleright External fluxes.

```
Landau (1930) ; Peierls (1933)
```
 \blacktriangleright Seiberg-Witten map.

 \triangleright Short distance singularities.

```
Heisenberg → Peierls → Pauli → Oppenheimer → Snyder
```
K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 \blacktriangleright External fluxes.

```
Landau (1930) ; Peierls (1933)
```
- \blacktriangleright Seiberg-Witten map.
- \blacktriangleright Large N gauge theories and matrix models.

 \triangleright Short distance singularities.

```
Heisenberg \rightarrow Peierls \rightarrow Pauli \rightarrow Oppenheimer \rightarrow Snyder
```
 \blacktriangleright External fluxes.

```
Landau (1930) ; Peierls (1933)
```
- \blacktriangleright Seiberg-Witten map.
- \blacktriangleright Large N gauge theories and matrix models.
- \triangleright The construction of gauge theories using the techniques of non-commutative geometry.

A DIA K PIA A BIA A BIA A Q A CA

$$
\blacktriangleright [x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

$$
\blacktriangleright [x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

$$
\blacktriangleright [\mathsf{x}_{\mu}, \mathsf{x}_{\nu}] = iF^{\rho}_{\mu\nu} \mathsf{x}_{\rho} \text{ (Lie algebra case)}
$$

$$
\blacktriangleright [x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}
$$

$$
\blacktriangleright [\mathsf{x}_{\mu}, \mathsf{x}_{\nu}] = iF^{\rho}_{\mu\nu} \mathsf{x}_{\rho} \text{ (Lie algebra case)}
$$

 \blacktriangleright $x_\mu x_\nu = q^{-1} R^{\rho\sigma}_{\mu\nu} x_\rho x_\sigma$ (quantum space case)

$$
\blacktriangleright [x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}
$$

$$
\blacktriangleright [\mathsf{x}_{\mu}, \mathsf{x}_{\nu}] = iF^{\rho}_{\mu\nu} \mathsf{x}_{\rho} \text{ (Lie algebra case)}
$$

 \blacktriangleright $x_\mu x_\nu = q^{-1} R^{\rho\sigma}_{\mu\nu} x_\rho x_\sigma$ (quantum space case)

► Definition of the derivative:
\n
$$
\partial^{\mu} x_{\nu} = \delta^{\mu}_{\nu}
$$
 [$x_{\mu}, f(x)$] = $i\theta_{\mu\nu} \partial^{\nu} f(x)$

$$
\blacktriangleright [x_{\mu}, x_{\nu}] = i\theta_{\mu\nu}
$$

$$
\blacktriangleright [\mathsf{x}_{\mu}, \mathsf{x}_{\nu}] = iF^{\rho}_{\mu\nu} \mathsf{x}_{\rho} \text{ (Lie algebra case)}
$$

 \blacktriangleright $x_\mu x_\nu = q^{-1} R^{\rho\sigma}_{\mu\nu} x_\rho x_\sigma$ (quantum space case)

► Definition of the derivative:
\n
$$
\partial^{\mu} x_{\nu} = \delta^{\mu}_{\nu}
$$
 [$x_{\mu}, f(x)$] = $i\theta_{\mu\nu}\partial^{\nu}f(x)$

► Define a * product
\n
$$
f * g = e^{\frac{i}{2} \frac{\partial}{x_\mu} \theta_{\mu\nu} \frac{\partial}{y_\nu}} f(x)g(y)|_{x=y}
$$

All computations can be viewed as expansions in θ expansions in the external field

More efficient ways?

Quantum field theory in a space with non-commutative geometry? BRS Symmetry?

Large N field theories

$$
\begin{aligned}\n\blacktriangleright \phi^i(x) \, i &= 1, \dots, N \, ; \, N \to \infty \\
\phi^i(x) &\to \phi(\sigma, x) \, 0 \le \sigma \le 2\pi \\
\sum_{i=1}^{\infty} \phi^i(x) \phi^i(x) &\to \int_0^{2\pi} d\sigma (\phi(\sigma, x))^2\n\end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

but

$$
\phi^4 \to (\int)^2
$$

Large N field theories

$$
\begin{aligned}\n\blacktriangleright \phi^i(x) \, i &= 1, \dots, N \, ; \, N \to \infty \\
\phi^i(x) &\to \phi(\sigma, x) \, 0 \le \sigma \le 2\pi \\
\sum_{i=1}^{\infty} \phi^i(x) \phi^i(x) &\to \int_0^{2\pi} d\sigma (\phi(\sigma, x))^2\n\end{aligned}
$$

but

$$
\phi^4 \to (\int)^2
$$

 \triangleright For a Yang-Mills theory, the resulting expression is local

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

Gauge theories on surfaces

E.G. Floratos and J.I.

 \triangleright Given an $SU(N)$ Yang-Mills theory in a d-dimensional space

 $A_\mu(x) = A^a_\mu(x) t_a$

Gauge theories on surfaces

E.G. Floratos and J.I.

 \triangleright Given an $SU(N)$ Yang-Mills theory in a d–dimensional space

 $A_\mu(x) = A^a_\mu(x) t_a$

 \triangleright there exists a reformulation in $d+2$ dimensions

 $A_{\mu}(x) \rightarrow A_{\mu}(x, z_1, z_2)$ $F_{\mu\nu}(x) \rightarrow F_{\mu\nu}(x, z_1, z_2)$ with $[z_1, z_2] = \frac{2i}{N}$

A DIA K PIA A BIA A BIA A Q A CA

$$
[A_{\mu}(x), A_{\nu}(x)] \rightarrow \{A_{\mu}(x, z_1, z_2), A_{\nu}(x, z_1, z_2)\}\text{Moyal}
$$

$$
[A_{\mu}(x), \Omega(x)] \rightarrow \{A_{\mu}(x, z_1, z_2), \Omega(x, z_1, z_2)\}\text{Moyal}
$$

$$
\int d^4x \; Tr\left(F_{\mu\nu}(x)F^{\mu\nu}(x)\right) \;\; \rightarrow \;\; \int d^4x dz_1 dz_2 \; F_{\mu\nu}(x,z_1,z_2)*
$$

$$
F^{\mu\nu}(x,z_1,z_2)
$$

These expressions are defined for all N!

Not necessarily integer ???

I. Large N

-A simple algebraic result:

At large N

The $SU(N)$ algebra \rightarrow The algebra of the area preserving diffeomorphisms of a closed surface. (sphere or torus).

KORK STRAIN A BY A GRAY

-The structure constants of $[SDiff(S^2)]$ are the limits for large N of those of $SU(N)$.

-Alternatively: For the sphere

$$
x_1 = \cos\phi \sin\theta, \quad x_2 = \sin\phi \sin\theta, \quad x_3 = \cos\theta
$$

$$
Y_{l,m}(\theta,\phi) = \sum_{\substack{i_k=1,2,3\\k=1,\dots,l}} \alpha_{i_1\dots i_l}^{(m)} x_{i_1} \dots x_{i_l}
$$

where $\alpha_{i}^{(m)}$ $\binom{m}{i_1...i_l}$ is a symmetric and traceless tensor. For fixed I there are 2I $+$ 1 linearly independent tensors $\alpha_{i,\dots}^{(m)}$ (*m*)
i₁...i_l' $m = -1, ..., 1$.

Choose, inside $SU(N)$, an $SU(2)$ subgroup.

 $[S_i, S_j] = i\epsilon_{ijk}S_k$

A basis for $SU(N)$:

$$
S_{l,m}^{(N)} = \sum_{\substack{i_k=1,\ldots,l \\ k=1,\ldots,l}} \alpha_{i_1\ldots i_l}^{(m)} S_{i_1\ldots i_j} S_{i_1\ldots S_{i_l}}
$$

$$
[S_{l,m}^{(N)}, S_{l',m'}^{(N)}] = i f_{l,m;l',m'}^{(N)l'',m''} S_{l'',m''}^{(N)}
$$

The three $SU(2)$ generators \mathcal{S}_i , rescaled by a factor proportional to $1/N$, will have well-defined limits as N goes to infinity.

$$
S_i \rightarrow T_i = \frac{2}{N} S_i
$$

\n
$$
[T_i, T_j] = \frac{2i}{N} \epsilon_{ijk} T_k
$$

\n
$$
T^2 = T_1^2 + T_2^2 + T_3^2 = 1 - \frac{1}{N^2}
$$

In other words: under the norm $||x||^2 = Trx^2$, the limits as N goes to infinity of the generators T_i are three objects x_i which commute and are constrained by

KOR KERKER E VAN

 $x_1^2 + x_2^2 + x_3^2 = 1$

N $\frac{N}{2i}\left[f, g\right] \rightarrow \epsilon_{ijk}$ $x_i \frac{\partial f}{\partial x}$ ∂x^j ∂g ∂x^k N $\frac{N}{2i}$ [T $_{l,m}^{(N)}$ $I_{l,m}^{(N)}, T_{l^{\prime},m}^{(N)}$ $\{Y_{l,m}, Y_{l',m'}\}$ $\rightarrow \{Y_{l,m}, Y_{l',m'}\}$ $N[A_\mu, A_\nu] \rightarrow \{A_\mu(x, \theta, \phi), A_\nu(x, \theta, \phi)\}\$

 \Rightarrow The d-dim. $SU(N)$ Yang-Mills theory for $N \rightarrow \infty$ ≡ A classical theory on a $d + 2$ -dim space.

KORKA REPARATION ADD

The quantum theory??

We can parametrise the \mathcal{T}_i 's in terms of two operators, z_1 and z_2 .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

$$
T_{+} = T_{1} + iT_{2} = e^{\frac{i z_{1}}{2}} (1 - z_{2}^{2})^{\frac{1}{2}} e^{\frac{i z_{1}}{2}}
$$

\n
$$
T_{-} = T_{1} - iT_{2} = e^{-\frac{i z_{1}}{2}} (1 - z_{2}^{2})^{\frac{1}{2}} e^{-\frac{i z_{1}}{2}}
$$

\n
$$
T_{3} = z_{2}
$$

If we assume that z_1 and z_2 satisfy:

 $[z_1, z_2] = \frac{2i}{N}$

The T_i 's satisfy the $SU(2)$ algebra.

If we assume that the T_i 's satisfy the $SU(2)$ algebra, the z_i 's satisfy the Heisenberg algebra

KORK STRAIN ABY COMPARI

For the torus

Choose, inside $SU(N)$, a quantum $U(1) \times U(1)$

$$
g = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \omega & 0 & \dots & 0 \\ 0 & 0 & \omega^2 & \dots & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & \dots & \omega^{N-1} \end{pmatrix} \hspace{0.2cm} ; \hspace{0.2cm} h = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}
$$

(N odd), $\omega=e^{4\pi i/N}$

$$
g^N = h^N = 1 \quad ; \quad hg = \omega gh
$$

For the torus

We can use the integer mod N powers of these matrices to express the $SU(N)$ generators:

$$
S_{m_1, m_2} = \omega^{m_1 m_2/2} g^{m_1} h^{m_2} \quad ; \quad S_{m_1, m_2}^{\dagger} = S_{-m_1, -m_2}
$$

$$
[S_m, S_n] = 2i \sin\left(\frac{2\pi}{N} \mathbf{m} \times \mathbf{n}\right) S_{m+n}
$$

$$
\mathbf{n} = (n_1, n_2) \text{ and } \mathbf{n} \times \mathbf{m} = n_1 m_2 - m_1 n_2
$$

$$
SU(N)|_{N \to \infty} = SDiff(T^2)
$$

 z_1 , z_2 the two angular variables:

$$
h = e^{iz_1} \quad g = e^{-2i\pi z_2} \Rightarrow [z_1, z_2] = \frac{2i}{N} \rightarrow hg = \omega gh
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

For the torus

The generators of the Heisenberg algebra z_1 and z_2 , as well as the group elements $h={\rm e}^{{\rm i} z_1}$ and $g={\rm e}^{-2{\rm i}\pi z_2}$

are infinite dimensional operators

but we can represent the $SU(N)$ algebra by the finite dimensional matrices g , h and S_{m_1,m_2}

They form a discrete subgroup of the Heisenberg group ⇒

quantum mechanics on a discrete phase space

We can define two new operators \hat{q} ("position" in the discrete space) and \hat{p} (its FFT): They are represented by finite matrices but, obviously, they do not satisfy the Heisenberg algebra.

A DIA K PIA A BIA A BIA A Q A CA

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

 \blacktriangleright Gauge transformations are:

 \blacktriangleright Gauge transformations are:

 \triangleright Diffeomorphisms space-time

 \blacktriangleright Gauge transformations are:

 \triangleright Diffeomorphisms space-time

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 \blacktriangleright Internal symmetries

- \blacktriangleright Gauge transformations are:
- \triangleright Diffeomorphisms space-time
- \blacktriangleright Internal symmetries
- \triangleright Question: Is there a space on which Internal symmetry transformations act as Diffeomorphisms?

KORK STRAIN ABY COMPARI

- \blacktriangleright Gauge transformations are:
- \triangleright Diffeomorphisms space-time
- \blacktriangleright Internal symmetries
- \triangleright Question: Is there a space on which Internal symmetry transformations act as Diffeomorphisms?
- \triangleright Answer: Yes, but it is a space with non-commutative geometry. A space defined by an algebra of matrix-valued functions

KORKA REPARATION ADD

Some useful references:

• Ali H. Chamseddine and Alain Connes ;

Why the Standard Model, arXiv:0706.3688 [hep-th]

• Ali H. Chamseddine, Alain Connes, and Viatcheslav Mukhanov ; Geometry and the Quantum: Basics, arXiv:1411.0977 [hep-th]

• Ali H. Chamseddine, Alain Connes, and Viatcheslav Mukhanov ; Quanta of Geometry: Noncommutative Aspects, arXiv:1409.2471 [hep-th]

The construction involves A fundamental spectral triplet :

Given a spin manifold M, the triplet consists of:

- 1. A Hilbert space H
- 2. An algebra of functions A which are $C^{\infty}(M)$
- 3. The Dirac operator D

(If we ignore gravity, D can be replaced by the chirality operator)

KORK STRAIN ABY COMPARI

K ロ K x 行 K K を K K を K と E → の Q (V)

 \triangleright A possible way to unify gauge theories and Gravity???

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

- \triangleright A possible way to unify gauge theories and Gravity???
- \triangleright A possible connection between gauge fields and scalar fields.

- \triangleright A possible way to unify gauge theories and Gravity???
- \triangleright A possible connection between gauge fields and scalar fields.

 \blacktriangleright The actual implementation brings us back to flat space calculations.

- \triangleright A possible way to unify gauge theories and Gravity???
- \triangleright A possible connection between gauge fields and scalar fields.

A DIA K PIA A BIA A BIA A Q A CA

- \blacktriangleright The actual implementation brings us back to flat space calculations.
- ▶ New predictions for the Standard Model parameters?

 \triangleright The Standard Model has 17 arbitrary parameters. They are all masses and coupling constants.

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

 \triangleright The Standard Model has 17 arbitrary parameters. They are all masses and coupling constants.

 \blacktriangleright All of them have been determined experimentally.

- \triangleright The Standard Model has 17 arbitrary parameters. They are all masses and coupling constants.
- \blacktriangleright All of them have been determined experimentally.
- \triangleright Could this number be reduced?

For example, can we "predict" the value of the Higgs mass?

$$
m_Z^2/m_H^2 = C = \frac{g_1^2 + g_2^2}{8\lambda}
$$

- \triangleright The Standard Model has 17 arbitrary parameters. They are all masses and coupling constants.
- \blacktriangleright All of them have been determined experimentally.
- \triangleright Could this number be reduced?

For example, can we "predict" the value of the Higgs mass?

$$
m_Z^2/m_H^2 = C = \frac{g_1^2 + g_2^2}{8\lambda}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 \triangleright Such a relation should correspond to a fixed point of the RG

- \triangleright The Standard Model has 17 arbitrary parameters. They are all masses and coupling constants.
- \blacktriangleright All of them have been determined experimentally.
- \triangleright Could this number be reduced?

For example, can we "predict" the value of the Higgs mass?

$$
m_Z^2/m_H^2 = C = \frac{g_1^2 + g_2^2}{8\lambda}
$$

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

 \triangleright Such a relation should correspond to a fixed point of the RG

Answer: Compute the corresponding β **-function.**

$$
16\pi^2 \beta_{g_1} = g_1^3 \frac{1}{10}
$$

\n
$$
16\pi^2 \beta_{g_2} = -g_2^3 \frac{43}{6}
$$

\n
$$
16\pi^2 \beta_{\lambda} = 12\lambda^2 - \frac{9}{5}g_1^2 \lambda - 9g_2^2 \lambda + \frac{27}{100}g_1^4 + \frac{9}{10}g_1^2 g_2^2 + \frac{9}{4}g_2^4
$$

イロト イ部ト イミド イミド ニミー のんぴ

$$
\beta_z = \beta_{\eta_1} + \beta_{\eta_2} =
$$

= $\frac{-\lambda w}{16\pi^2 \rho z} \left[\left(\frac{27}{100} \rho^2 + \frac{9}{10} \rho + \frac{9}{4} \right) z^2 - \left(2\rho^2 + \frac{54}{5} \rho - \frac{16}{3} \right) z$
+12(ρ +1)²

$$
\eta_1 = \frac{g_1^2}{\lambda} \ ; \ \ \eta_2 = \frac{g_2^2}{\lambda} \ ; \ \ z = \eta_1 + \eta_2 \ ; \ \ \rho = \frac{\eta_1}{\eta_2} \ ; \ \ w = \eta_1 \eta_2
$$

• β_z has no zeroes! \Rightarrow The Standard Model is irreducible.

Related question: Is there a B.R.S. symmetry for the model on non-com. geometry?

The spectacular accuracy reached by experiments, as well as theoretical calculations, made particle physics a precision science

Example: $m_W = 80.385 \pm 0.015$ GeV \Rightarrow "Approximate" theories are no more sufficient!

A discrepancy by a few percent implies that we do not have the right theory!

KORKA REPARATION ADD

 \blacktriangleright The completion of the Standard Model strongly indicates that new and exciting Physics is around the corner

 \triangleright The completion of the Standard Model strongly indicates that new and exciting Physics is around the corner

 \triangleright But, for the moment, we see no corner!

Conclusions

▶ Non-Commutative Geometry has come to stay!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

Conclusions

- ▶ Non-Commutative Geometry has come to stay!
- \triangleright Whether it will turn out to be convenient for us to use, is still questionable.

Conclusions

- ▶ Non-Commutative Geometry has come to stay!
- \triangleright Whether it will turn out to be convenient for us to use, is still questionable.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 \blacktriangleright It will depend on our ability to simplify the mathematics sufficiently, or to master them deeply, in order to get new insights