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I Seiberg-Witten map.

I Large N gauge theories and matrix models.

I The construction of gauge theories using the techniques of
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I [xµ, xν ] = iθµν
simplest case: θ is constant (canonical, or Heisenberg case).

I [xµ, xν ] = iF ρ
µνxρ (Lie algebra case)

I xµxν = q−1Rρσ
µν xρxσ (quantum space case)

I Definition of the derivative:
∂µxν = δµν [xµ, f (x)] = iθµν∂

ν f (x)

I Define a * product

f ∗ g = e
i
2
∂
xµ
θµν

∂
yν f (x)g(y)|x=y
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All computations can be viewed as expansions in θ
expansions in the external field

More efficient ways?

Quantum field theory in a space with non-commutative geometry?
BRS Symmetry?



Large N field theories

I φi (x) i = 1, ...,N ; N → ∞

φi (x) → φ(σ, x) 0 ≤ σ ≤ 2π

∑∞
i=1 φ

i (x)φi (x) →
∫ 2π
0 dσ(φ(σ, x))2

but

φ4 → (
∫

)2

I For a Yang-Mills theory, the resulting expression is local
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Gauge theories on surfaces

E.G. Floratos and J.I.

I Given an SU(N) Yang-Mills theory in a d−dimensional space

Aµ(x) = Aa
µ(x) ta

I there exists a reformulation in d+2 dimensions

Aµ(x)→ Aµ(x , z1, z2) Fµν(x)→ Fµν(x , z1, z2)

with [z1, z2] = 2i
N
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[Aµ(x),Aν(x)]→ {Aµ(x , z1, z2),Aν(x , z1, z2)}Moyal

[Aµ(x),Ω(x)]→ {Aµ(x , z1, z2),Ω(x , z1, z2)}Moyal

∫
d4x Tr (Fµν(x)Fµν(x)) →

∫
d4xdz1dz2 Fµν(x , z1, z2) ∗

Fµν(x , z1, z2)

These expressions are defined for all N!

Not necessarily integer ???



I. Large N

-A simple algebraic result:

At large N

The SU(N) algebra → The algebra of the area preserving
diffeomorphisms of a closed surface. (sphere or torus).



-The structure constants of [SDiff (S2)] are the limits for large N of
those of SU(N).



-Alternatively: For the sphere

x1 = cosφ sinθ, x2 = sinφ sinθ, x3 = cosθ

Yl ,m(θ, φ) =
∑

ik=1,2,3
k=1,...,l

α
(m)
i1...il

xi1 ...xil

where α(m)
i1...il

is a symmetric and traceless tensor.

For fixed l there are 2l + 1 linearly independent tensors α(m)
i1...il

,
m = −l , ..., l .



Choose, inside SU(N), an SU(2) subgroup.

[Si , Sj ] = iεijkSk

A basis for SU(N):

S
(N)
l ,m =

∑
ik=1,2,3
k=1,...,l

α
(m)
i1...il

Si1 ...Sil

[S
(N)
l ,m , S

(N)
l ′,m′ ] = if

(N)l ′′,m′′

l ,m; l ′,m′ S
(N)
l ′′,m′′



The three SU(2) generators Si , rescaled by a factor proportional to
1/N, will have well-defined limits as N goes to infinity.

Si → Ti = 2
N Si

[Ti ,Tj ] = 2i
N εijkTk

T 2 = T 2
1 + T 2

2 + T 2
3 = 1− 1

N2

In other words: under the norm ‖x‖2 = Trx2, the limits as N goes
to infinity of the generators Ti are three objects xi which commute
and are constrained by

x2
1 + x2

2 + x2
3 = 1



N
2i [f , g ]→ εijk xi

∂f
∂xj

∂g
∂xk

N
2i [T

(N)
l ,m ,T

(N)
l ′,m′ ]→ {Yl ,m,Yl ′,m′}

N[Aµ,Aν ]→ {Aµ(x , θ, φ),Aν(x , θ, φ)}

⇒ The d-dim. SU(N) Yang-Mills theory for N →∞
≡
A classical theory on a d + 2-dim space.

The quantum theory??



II. To all orders

We can parametrise the Ti ’s in terms of two operators, z1 and z2.

T+ = T1 + iT2 = e
iz1
2 (1− z2

2 )
1
2 e

iz1
2

T− = T1 − iT2 = e−
iz1
2 (1− z2

2 )
1
2 e−

iz1
2

T3 = z2



If we assume that z1 and z2 satisfy:

[z1, z2] = 2i
N

The Ti ’s satisfy the SU(2) algebra.

If we assume that the Ti ’s satisfy the SU(2) algebra, the zi ’s
satisfy the Heisenberg algebra



For the torus

Choose, inside SU(N), a quantum U(1)× U(1)

(N odd), ω=e4πi/N

gN = hN = 1 ; hg = ωgh



For the torus

We can use the integer modN powers of these matrices to express
the SU(N) generators:

Sm1,m2 = ωm1m2/2gm1hm2 ; S†m1,m2
= S−m1,−m2

[Sm, Sn] = 2i sin
(
2π
N

m× n
)

Sm+n

n = (n1, n2) and n×m = n1m2 −m1n2

SU(N)|N→∞ = SDiff(T 2)

z1 , z2 the two angular variables:

h = eiz1 g = e−2iπz2 ⇒ [z1, z2] =
2i
N
→ hg = ωgh



For the torus

The generators of the Heisenberg algebra z1 and z2,
as well as the group elements h = eiz1 and g = e−2iπz2

are infinite dimensional operators

but we can represent the SU(N) algebra by the finite dimensional
matrices g , h and Sm1,m2

They form a discrete subgroup of the Heisenberg group
⇒
quantum mechanics on a discrete phase space

We can define two new operators
q̂ ("position" in the discrete space) and p̂ (its FFT):
They are represented by finite matrices but, obviously, they do not
satisfy the Heisenberg algebra.



The techniques of non-com. geometry

I Gauge transformations are:

I Diffeomorphisms space-time

I Internal symmetries

I Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

I Answer: Yes, but it is a space with non-commutative geometry.
A space defined by an algebra of matrix-valued functions
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Some useful references:

• Ali H. Chamseddine and Alain Connes ;

Why the Standard Model, arXiv:0706.3688 [hep-th]

• Ali H. Chamseddine, Alain Connes, and Viatcheslav Mukhanov ;

Geometry and the Quantum: Basics, arXiv:1411.0977 [hep-th]

• Ali H. Chamseddine, Alain Connes, and Viatcheslav Mukhanov ;

Quanta of Geometry: Noncommutative Aspects, arXiv:1409.2471
[hep-th]



The construction involves A fundamental spectral triplet :

Given a spin manifold M, the triplet consists of:

1. A Hilbert space H

2. An algebra of functions A which are C∞(M)

3. The Dirac operator D

(If we ignore gravity, D can be replaced by the chirality operator)



I SO WHAT?

I A possible way to unify gauge theories and Gravity???

I A possible connection between gauge fields and scalar fields.

I The actual implementation brings us back to flat space
calculations.

I New predictions for the Standard Model parameters?
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I The Standard Model has 17 arbitrary parameters. They are all
masses and coupling constants.

I All of them have been determined experimentally.

I Could this number be reduced?

For example, can we “predict” the value of the Higgs mass?

m2
Z/m2

H = C =
g2
1 + g2

2
8λ

I Such a relation should correspond to a fixed point of the RG

I Answer: Compute the corresponding β-function.
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16π2βg1 = g3
1
1
10

16π2βg2 = −g3
2
43
6

16π2βλ = 12λ2 − 9
5

g2
1λ− 9g2

2λ+
27
100

g4
1 +

9
10

g2
1 g2

2 +
9
4

g4
2



βz = βη1 + βη2 =

=
−λw

16π2ρz

[(
27
100

ρ2 +
9
10
ρ+

9
4

)
z2 −

(
2ρ2 +

54
5
ρ− 16

3

)
z

+12(ρ+ 1)2]

η1 =
g2
1
λ

; η2 =
g2
2
λ

; z = η1 + η2 ; ρ =
η1

η2
; w = η1η2

• βz has no zeroes! ⇒ The Standard Model is irreducible.

Related question: Is there a B.R.S. symmetry for the model on
non-com. geometry?



The spectacular accuracy reached by experiments, as well as
theoretical calculations, made particle physics a precision
science

Example: mW = 80.385± 0.015GeV
⇒ "Approximate" theories are no more sufficient!

A discrepancy by a few percent implies that we do not have the
right theory!



I The completion of the Standard Model strongly indicates
that new and exciting Physics is around the corner

I But, for the moment, we see no corner!
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Conclusions

I Non-Commutative Geometry has come to stay!

I Whether it will turn out to be convenient for us to use, is still
questionable.

I It will depend on our ability to simplify the mathematics
sufficiently, or to master them deeply, in order to get new
insights
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