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Worldline Techniques
Supersymmetry

Recent applications of worldline techniques

Christian Schubert gave an outline[1] of the development of the worldline formalism in
his earlier talk. Yet first quantisation is proving useful for exploring currently trending
topics in high energy physics, such as

Gravitational and axial anomalies [Alvarez-Gaumé, Witten, Nuclear Physics B234]

Higher spin fields and differential forms [Bastianelli, Corradini, Latini
arXiv:0701055 [hep-th]], [Bastianelli, Bonezzi, Iazeolla arXiv:1204.5954 [hep-th]]

Non-Abelian quantum field theory [Bastianelli et. al arXiv:1504.03617 [hep-th]],
[Ahmadiniaz et. al arXiv:1508.05144 [hep-th]]

QFT in non-commutative space-time [Ahmadiniaz, Corradini, JPE, Pisani]

These applications have something in common: internal degrees of freedom are
represented by additional, auxiliary fields in the worldline theory. In the non-Abelian
case, these supplementary “colour fields” generate the Hilbert space associated to the
gauge group degrees of freedom.

1Schubert, Phys.Rept. 355
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Worldline Techniques
Supersymmetry

Worldline description of QED

The phase space action for spin 1
2

matter (we consider massless particles for
simplicity) coupled to a U(1) gauge potential, A(x), is given in the worldline
formalism by[2]

S [ω, p, ψ, e, χ] =

∫ 1

0

dτ

[
p · ω̇ +

i

2
ψ · ψ̇ − eH − iχQ

]
,

where

H ≡ 1

2
π2 +

i

2
ψµFµνψ

ν ; Q ≡ ψ · π; πµ = pµ −Aµ.

Here ωµ is the embedding of a particle trajectory in Minkowski space and pµ its
momentum, whilst ψµ are Grassmann functions that represent the spin degrees of
freedom of the particle.

2Strassler, Nucl. Phys. B385
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Worldline Techniques
Supersymmetry

SUSY

There is a local worldline supersymmetry associated to the einbein, e(τ), and the
gravitino, χ(τ), whose algebra closes as

{Q,Q}PB = −2iH; {H,Q}PB = 0; {H,H}PB = 0.

These Poisson brackets follow from the canonical simplectic relations

{ωµ, pν}PB = δµν ; {ψµ, ψν}PB = −iηµν .

Field transformations follow from Poisson brackets δ• = {•, G}PB , with the generator

G(τ) = ξ(τ)H + iη(τ)Q,

providing

δωµ = ξpµ + iηψµ

δψµ = −ηpµ

δe = ξ̇ + 2iχη

δχ = η̇

James P. Edwards Worldline colour fields and quantum field theory



Introduction
Colour fields
Quantisation
Irreducibility
Applications

Conclusion

Worldline Techniques
Supersymmetry

Canonical quantisation

After gauge fixing the translation invariance and super-symmetry, the equations of
motion for the worldline fields e(τ) = T and χ(τ) = 0 still imply constraints that
must be imposed on the physical states of the Hilbert space,

H |phys〉 = 0 implies the mass shell condition[
(p−A)2 + i

4
[γµ, γν ]Fµν

]
|phys〉 = 0.

Q |phys〉 = 0 provides the covariant Dirac equation γ · (p−A) |phys〉 = 0.

Note that in canonical quantisation the anti-commutation relations for the
Grassmann fields are solved by setting ψ̂µ −→ 1√

2
γµ.

We can think of these constraints as projecting unwanted states out of the Hilbert
space, leaving us with the correct subspace of physically meaningful states.

Thus far, however, we have described only an Abelian theory, so how can we modify
the worldline theory for a particle that transforms in a given representation of SU(N)?

James P. Edwards Worldline colour fields and quantum field theory
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Worldline Techniques
Supersymmetry

Non-Abelian symmetry group - Wilson loops

In the case of an SU(N) symmetry group the vector potential is Lie algebra valued

Gauge covariance demands that the worldline interaction take on a path ordering
prescription, since Aµ = AaµT

a.

Physical information of the field theory can be expressed in terms of Wilson lines

W (T ) := P

{
exp

(
i

∫ T

0

Aa(τ)T adτ

)}
.

Here, A = A · ω − 1
2
ψµFµνψ

ν with F = d ∧A− iA ∧A.

Problem!

The näıve replacement πµ → pµ −AaµT a provides Poisson brackets

i

2
{Q,Q}PB =

1

2
π2 +

i

2
ψµ∂[µAν]ψ

ν ?!
= H.

This generates only the “Abelian” part of the field strength tensor, so it seems we
must abandon the supersymmetric formulation....?

James P. Edwards Worldline colour fields and quantum field theory
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Worldline theory
Unitary symmetry

Auxiliary variables

Building upon recent work on higher spin fields we introduce additional worldline fields
to represent the degrees of freedom associated to the colour space of the matter field.

Take N pairs of Grassmann fields c̄r, cr with Poisson brackets
{c̄r, cs}PB = −iδrs . They transform in the (conjugate-)fundamental of SU(N).

Consider the Poisson brackets for the new objects Ra ≡ c̄r(T a)r
scs,{

Ra, Rb
}
PB

= fabcRc .

These colour fields provide us with a (classical) representation of the gauge
group algebra.

We may use them to absorb the gauge group indices attached to the potential. They
also produce the path ordering automatically, greatly simplifying the organisation of
perturbative calculations.

James P. Edwards Worldline colour fields and quantum field theory
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Worldline theory
Unitary symmetry

Colour space

The Hilbert space of the colour fields is described by wavefunction components which
transform in fully anti-symmetric representations of the gauge group. In canonical
quantisation we can use a coherent states basis,

〈ū| = 〈0|eū
r ĉr ; 〈ū| ĉ†r = ūr 〈ū| ; 〈ū| ĉr = ∂ūr 〈ū| ,

to write wavefunctions as

Ψ(x, ū) = ψ(x) + ψr1(x)ūr1 + ψr1r2(x)ūr1 ūr2 + . . .+ ψr1r2...rN (x)ūr1 ūr2 · · · ūrN ,

where

ψr1r2...rp ∼
..

︸︷︷︸
p

So we will need some way of picking out contributions from only one of these
irreducible representations.
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Arbitrary matter multiplets

Can we also describe matter that does not transform in a fully anti-symmetric
representation?

We need to enrich the colour Hilbert space to include wavefunction components
that transform in less-trivial representations

Achieve by using multiple copies of the colour fields – using F families of fields
leads to the wavefunction being described by components transforming in the
F -fold tensor product

Ψ(x, ū) ∼
∑

{n1,n2,...nF }

..

︸︷︷︸
nF

⊗ . . .⊗ ..

︸︷︷︸
n2

⊗ ..

︸︷︷︸
n1

How do we project onto just one irreducible representation from this space?

⊂ ⊗

James P. Edwards Worldline colour fields and quantum field theory
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Unitary symmetry

Generalised worldline action

Incorporating F families of the colour fields into the worldline dynamics yields the
phase space action

S [ω, p, ψ, e, χ, c̄, c] =

∫ 1

0

dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄rf ċfr − eH̃ − iχQ̃

]
,

where

H̃ = π̃2 +
i

2
ψµF aµνψ

ν c̄rf(T a)r
scfs; Q̃ = ψ · π̃; π̃µ = pµ−Aaµc̄rf(T a)r

scfs.

The anti-commutating nature of the colour fields has restored the supersymmetry{
Q̃, Q̃

}
PB

= −2iH̃

where now in H̃, we have completed Fµν to the full, non-Abelian field strength
tensor.

In fact, the supersymmetry of the matter and spinor fields can be extended to
incorporate the colour fields to form a 1D super-gravity with novel interactions.
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U(F ) worldline symmetry.

There is a global U(F ) symmetry that rotates between the families of colour fields:

cfr → Λfgcgr; c̄rf → c̄rgΛ
†
gf .

Gauging this symmetry will allow a projection onto chosen representations. The
generators of the symmetry are Lfg := c̄f

rcgr, satisfying the algebra

{Lfg, Lf ′g′}PB = iδfg′Lf ′g − iδf ′gLfg′ .

We choose to partially gauge the U(F ) symmetry, introducing gauge fields afg(τ) for
the generators Lfg only for f > g. This leads us to the worldline action (sf = nf − N

2
)

S′ [ω, p, ψ, e, χ, c̄, c, a]=

∫ 1

0

dτ

[
p · ω̇ +

i

2
ψ · ψ̇ + ic̄rf ċfr − eH̃ − iχQ̃

−
F∑
f=1

aff (Lff − sf )−
∑
g<f

afgLfg

]
.

Partial gauging has allowed the Chern-Simons terms
F∑
f=1

affsf

These will provide us with the projection that we need!
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The Fock space
Path integral quantisation
Functional determinants

Constraints on physical states

In a coherent state basis the U(F ) generators become L̂fg = ūrf∂ūrg . The equations of
motion for the diagonal elements aff impose constraints on the state space:(

L̂ff + N
2

)
|Ψ〉 = nf |Ψ〉 −→

(
ūrf

∂
∂ūr
f
− nf

)
Ψ(x, ū) = 0

Similarly for the off-diagonal elements:

L̂fg |Ψ〉 = 0 −→ ūrf
∂
∂ūrg

Ψ(x, ū) = 0

Here’s an example with F = 2 families and Ψ ∼
∑
n1,n2

..︸︷︷︸
n2

⊗ ..︸︷︷︸
n1

.

(
L̂22 +

N

2

)
|Ψ〉 = 2 |Ψ〉 and

(
L̂11 +

N

2

)
|Ψ〉 = |Ψ〉 =⇒ Ψ ∼ ⊗ .

L̂21 |Ψ〉 = 0 =⇒ Ψ ∼
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The Fock space
Path integral quantisation
Functional determinants

Functional quantisation on S1.

Let’s check our work by calculating the Wilson-loop interaction for an arbitrary matter
multiplet. The part of the action involving the colour fields is

S =

∫ 1

0

dτ

[
c̄rf ċfr − ic̄rfAa(T a)r

scfs +
F∑
f=1

iaff
(
c̄rfcfr−sf

)
+
∑
g<f

iafg c̄
r
fcgr

]
.

We also need to gauge fix the local U(F ) symmetry associated to the colour fields:

Choose âfg = diag (θ1, θ2, . . . , θF ).

Introduce the Faddeev-Popov determinant that maintains gauge invariance.

µ ({θk}) =
∏
h<g

2i sin

(
θg − θh

2

)
.

Interpret as a measure on the U(F ) moduli that remain to be integrated over:∫
Dafg −→

F∏
f=1

∫ 2π

0

dθf
2π

µ ({θk})
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The Fock space
Path integral quantisation
Functional determinants

Integrating over colour fields

The integration over the colour degrees of freedom factorises and provides a product of
functional determinants

F∏
f=1

Det
ABC

(
i

(
d

dτ
+ iθf + iA

))
Firstly, we evaluate the product of the eigenvalues and find the regular determinant[3]

F∏
k=1

det
(√

eiθkW (2π) + 1/
√
eiθkW (2π)

)
.

It is then necessary to express this determinant in terms of group invariants:

F∏
k=1

(
trW ( · )+trW ( )eiθk+trW ( )e2iθk+. . .+trW ( .. )e(N−1)iθk+trW ( · )eiNθk

)
.

How do we extract a Wilson loops transforming in a single irreducible representation?

3JPE arXiv:1411.6540
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Projection
The final result

Picking out an irrep.

The integral over the U(F ) moduli and their Faddeev-Popov measure will provide the
irreducibility we seek. Putting everything together, we must determine

F∏
k=1

∫ 2π

0

dθk
2π

e−inkθk
∏
j<k

(
1−e−iθkeiθj

)
×

F∏
k=1

(
trW ( · )+trW ( )eiθk+trW ( )e2iθk + . . .+trW ( .. )e(N−1)iθk+trW ( · )eiNθk

)
.

If we introduce the worldline Wilson-loop variables zk = eiθk then we can recast this
expression as a contour integral in the complex plane:

F∏
k=1

∮
dzk
2πi

∏
j<k

(
1− zj

zk

) F∏
k=1

N∑
p=0

trWp

z
nk+1−p
k

where Wp ∼ .. transforms in the representation with p fully anti-symmetrised indices.

James P. Edwards Worldline colour fields and quantum field theory
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Projection
The final result

A demonstration

Let’s return to our illustrative example to see how this works. We take F = 2 and
n2 = 2, n1 = 1. We compute, for gauge group SU(N),∮

dz1

2πi

∮
dz2

2πi

(
1− z1

z2

) N∑
p=0

trWp

z2−p
1

N∑
p=0

trWp

z3−p
2

.

The contour integrals just pick out the simple poles at z = 0:

trW
( )

trW ( )− trW
( )

trW (·)

= trW
( )

as desired!

James P. Edwards Worldline colour fields and quantum field theory
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Projection
The final result

In general

Putting the colour space information back in to the full expression for the worldline
formulation of the field theory’s partition function we arrive at

ΓΨ [A] =

∫ ∞
0

dT

T

∮
DωDψ e−

1
2

∫ 2π
0

ω̇2

T
+ψ·ψ̇ trRP exp

(
i

∫ 2π

0

A[ω(τ), ψ(τ)]dτ

)
where the Wilson-loop interaction generated by the colour fields transforms in the
representation R specified by our choice of F and the F -tuple (n1, n2, . . . nF ) so that
the spinor wavefunction has Young Tableau:

Ψ(x, ū) ∼

nF ...

..

...

...

...

...n1

..

︸ ︷︷ ︸
F columns
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Outline of (ongoing) applications

So far, applications of this technique to non-Abelian quantum field theory include

Vacuum polarisation: scalar and spinor contributions to the gluon self energy at
one loop order for a matter transforming in fully (anti-)symmetric representations
of the gauge group.

Scalar propagator in a non-Abelian background: again the matter was chosen to
transform in a fully (anti-)symmetric representation of the gauge group.

Wilson-loop interactions for spinor matter transforming in an arbitrary
representation of the gauge group.

Ongoing work includes

Extending the tree-level and one-loop amplitudes to arbitrary representations
using the families of colour fields presented here.

Describing the spinor propagator in a non-Abelian background in the worldline
formalism.

Application of the same techniques to Lorentz group structure of effective action
for U(N) Yang-Mills theory in non-commutative space-time.

James P. Edwards Worldline colour fields and quantum field theory
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Auxiliary worldline fields can be used to encode Lie group degrees of freedom for
matter fields in the worldline approach to QFT.

1 Grassmann worldline fields span a Hilbert space described by (reducible) tensor
products of fully anti-symmetric representations of the gauge group.

2 Partially gauging a U(F ) symmetry enforces physical states to transform in an
irreducible representation.

3 Although I haven’t shown it, one may achieve completely analogous results using
bosonic colour fields with only minor modifications.

4 Very versatile technique is easy to apply to scattering amplitudes, higher-loop
effective actions, confinement, tensor decomposition of vertices....

Thank you for your attention.
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