

6th International Conference on New Frontiers in Physics (ICNFP)

Probing QCD with photons and jets with the ATLAS detector

Giuseppe Callea on behalf of the ATLAS collaboration

Istituto Nazionale di Fisica Nucleare

UNIVERSITÀ DELLACALABRIA

28/08/2017

Outline

Physics with jets

- Inclusive jet at 8 TeV; (*arXiv:1706.03192*)
- Inclusive jets and di-jets at 13 TeV; (ATLAS-CONF-2017-048)
- Determination of α_s from Transverse Energy-Energy Correlation (TEEC) in multi-jet events; (*arXiv:1707.02562*)

Physics with photon

- Inclusive photon at 13 TeV; (*Phys. Lett. B* 770 (2017) 473)
- Photon + jet at 8 TeV; (*Nucl. Phys. B* 918 (2017) 257)
 - Photon + jet at 13 TeV; (*ATLAS-CONF-2017-059*)
 - Photon pair production at 8 TeV; (*Phys. Rev. D* 95 (2017) 112005)

Motivation

a

- Test of perturbative QCD predictions;
- Constraint on proton PDFs;
- Determination of the strong coupling constant;
- Description of background event kinematic for different searches for new physics.

Inclusive Jet production

 $\sqrt{s} = 8 \text{ TeV}$

 $pp \rightarrow Jet + X$

- $P_T > 70 \text{ GeV};$
- |y| < 3;
- anti- k_t jets with both R=0.4 and R=0.6;

• $P_T > 100$ GeV;

 $\sqrt{s} = 13 \text{ TeV}$

- |y| < 3;
- Only R=0.4 anti-k_t jets;

$\frac{Inclusive Jet production}{\sqrt{s} = 8 \text{ TeV}}$

- The dominant experimental uncertainties are the jet energy scale and jet energy resolution.
- Theory predictions corrected for non-perturbative and electroweak effects.

Inclusive Jet production

NLO QCD predictions are typically above the data for $P_T \leq 100$ GeV. Better agreement for higher P_T , except for $P_T > 1$ TeV where the NLO QCD predictions are higher (10-20%) than data. Same behavior observed for different PDF sets.

NNLO pQCD prediction based on: • *arXiv: 1611.01460*;

• arXiv: 1704.00923;

are available at 13 TeV. No significant deviations from data are observed, except at |y| > 2.5.

Inclusive Jet production

Di-Jet production at 13 TeV

- At least two jets with $P_T > 75$ GeV, within the interval |y| < 3;
- $H_{T,2} = P_{T1} + P_{T2}$ has to be higher than 200 GeV;

Double differential cross section is measured as a function of the invariant mass of the di-jet system, m_{jj} , in $y^* = |y_1 - y_2|/2$ bins.

Di-Jet production at 13 TeV

Fheory/Data

0.8

0.8

Fair agreement between data and NLO QCD predictions within the experimental uncertainties.

 χ^2 tests made for each PDF set in individual m_{jj} and y^* bins and when fitting to all y^* regions (see backup). Good agreement between NLO QCD and data.

Transverse Energy-Energy Correlation defined as the energy-weighted angular distribution of hadron pairs. Event shape independent from the thrust axis and the sphericity tensor. $\frac{3}{2} \quad 10 = 10$ $ATLAS \quad - Total$

$$\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma}{dx_{T_i} dx_{T_j} d\cos\phi} x_{T_i} x_{T_j} dx_{T_i} dx_{T_j}$$

where $x_{T_i} = E_{T_i} / \sum_k E_{T_k}$

Its associated asymmetry ATEEC is defined as the difference between the forward and the backward part of the TEEC:

$$\frac{1}{\sigma} \frac{d\Sigma^{asym}}{d\cos\phi} \equiv \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} \Big|_{\phi} - \frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} \Big|_{\pi-\phi}$$

Results obtained at 8 TeV:

- Require two jets with $P_T > 100 \text{ GeV}$ with |y| < 2.5.
- Require $H_{T_2} = P_{T_1} + P_{T_2} > 800 \text{ GeV};$

Double differential distributions in H_{T_2} and $\cos \phi$.

The distributions are unfolded at particle level and then compared to pQCD predictions of NLOJET++ corrected for non-perturbative effects.

The theoretical uncertainty due to the choice of the scale, results to be the dominant one in this measurement (~20% in the central region of the TEEC distributions).

The theoretical predictions of NLOJET++ are in good agreement with the data within the theoretical uncertainties for both TEEC and ATEEC.

TEEC and ATEEC can be fitted by the NLOJET++ predictions varying α_s . The fits to extract $\alpha_s(M_Z)$ are repeated for each bin of H_{T_2} separately. Each value of $\alpha_s(M_Z)$ is then evolved to the Q scale using two loop RGE.

 $\alpha_s(M_Z) = 0.1162 \pm 0.0011 \text{ (exp.)} ^{+0.0076}_{-0.0061} \text{ (scale)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 (NP)$

Global ATEEC fit:

 $\alpha_s(M_Z) = 0.1196 \pm 0.0013 \text{ (exp.)} ^{+0.0061}_{-0.0013} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0004 (NP)$

Inclusive photon at 13 TeV

- Measurement of $d\sigma/dE_T^{\gamma}$ in four $|\eta^{\gamma}|$ bins for the range $125 < E_T^{\gamma} < 1500$ GeV.
- Photon identification and isolation cuts are applied:

 $E_T^{iso} < 4.2 \cdot 10^{-3} \cdot E_T^{\gamma} + 4.8 \text{ GeV}$

The background is then subtracted with a data-driven method.

The measured differential cross sections are compared with the NLO QCD predictions of *JETPHOX* using the MMHT2014 PDF set.

Inclusive photon at 13 TeV

- NLO QCD predictions underestimate the data: 10-15% (similar to the theoretical uncertainties);
- The theoretical uncertainties are larger than the experimental ones;
- For $E_T^{\gamma} \leq 600 \text{ GeV}$ the measurements are systematically limited;
- The NLO QCD predictions of *JETPHOX* give an adeguate description of the data within the theoretical uncertainties.

The photon energy scale uncertainty dominates at high E_T^{γ} : 2-5% (7-18%) for $|\eta^{\gamma}| < 0.6 \ (1.81 < |\eta^{\gamma}| < 2.37).$

The photon ID uncertainty gives a significant contribution at low E_T^{γ} .

Photon + Jet at 13 TeV

• Measurements of differential cross sections as a function of E_T^{γ} , P_T^{jet} , $\Delta \phi^{\gamma-jet}$, $m^{\gamma-jet}$ and $\cos \theta^*$ to study the γ + Jet dynamics.

 $\cos \theta^* = \tanh (\eta^{\gamma} - y^{jet})/2$ where θ^* coincides with the scattering angle in the CM frame.

• Phase-space region defined by: $E_T^{\gamma} > 125 \text{ GeV}, |\eta^{\gamma}| < 2.37 \text{ (excluding 1.37 < } |\eta^{\gamma}| < 1.56 \text{)}, P_T^{jet} > 100 \text{ GeV}, |y^{jet}| < 2.37 \text{ and } \Delta R^{\gamma-jet} > 0.8.$

 $E_T^{iso} < 4.2 \cdot 10^{-3} \cdot E_T^{\gamma} + 10 \text{ GeV}$

Additional cuts for $d\sigma/dm^{\gamma-jet}$ and $d\sigma/d|\cos\theta^*|$ to perform the measurement in an unbiased phase-space region :

 $|\eta^{\gamma} + y^{jet}| < 2.37$ $|\cos \theta^*| < 0.83$ $m^{\gamma - jet} > 450 \text{ GeV}$

Photon + Jet at 13 TeV

[dd] |*θ

dg/d|cos

NLO/Data

18

- Comparison with fixed-order NLO QCD predictions of *JETPHOX* and ME+PS@NLO SHERPA (NEW!);
- Values up to 1.5 TeV accessible for E_T^{γ} and P_T^{jet} ;
- $d\sigma/d|\cos\theta^*|$ increases as $|\cos\theta^*|$ increases in agreement with NLO expectations.
- The QCD predictions of JETPHOX and SHERPA give an adeguate description of the data within the theoretical uncertainties.

Photon + Jets at 8 TeV [pb/GeV

19

10-

 10^{-4}

10⁻⁵

 $_{-}$ pp $\rightarrow \gamma$ + 2 jets + X

 $E_T^{\gamma} > 130 \text{ GeV}$

 $p_{\tau}^{jet1} > 100 \text{ GeV}$

dσ/dp^{jet2} [

NLO/Data

 γ + 1, 2, 3 dynamics has been studied at 8 TeV; Measurements of $d\sigma/dP_T^{jet1,2,3}$ and the angular correlations between the photon and the jets $(d\sigma/d\Delta\phi^{\gamma-jet2}, d\sigma/d\Delta\phi^{jet1-jet2});$

 γ + 2 jets dynamics $E_T^{\gamma} > 130 \text{ GeV}$, anti-k_t jet (R=0.6) with $|y^{jet}| < 4.4$ $P_T^{jet1} > 100 \text{ GeV} \text{ and } P_T^{jet2} > 65 \text{ GeV}.$

Good description of the NLO QCD predictions of BlackHat.

200

300

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}$

Data

 p_{T}^{jet2}

[GeV]

400

HHH NLO QCD

(BLACKHAT, D)

Photon + Jet at 8 TeV

Photon pair production

Study of the process $pp \rightarrow \gamma\gamma + X$ by measuring differential cross sections as functions of:

- diphoton invariant mass $m_{\gamma\gamma}$;
- diphoton transverse momentum $P_{T,\gamma\gamma}$;
- azimuthal separation between the photons $\Delta \phi_{\gamma\gamma}$;
- $\cos \theta_{\eta}^{*}$ $\phi_{\eta}^{*} \equiv \tan(\frac{\pi \Delta \phi_{\gamma\gamma}}{2}) \sin \theta_{\eta}^{*};$
- transverse component of $\vec{P}_{T,\gamma\gamma}$ respect to the thrust axis a_T .

Phase-space region selected:
$$E_T^{\gamma(1)} > 40 \text{ GeV}$$
,
 $E_T^{\gamma(2)} > 30 \text{ GeV}$, $|\eta^{\gamma}| < 2.37$ (excluding
 $1.37 < |\eta^{\gamma}| < 1.56$), $\Delta R_{\gamma\gamma} > 0.4$ and $E_T^{iso} < 11$ (

Comparison with:

- Fixed-Order QCD calculations of: 2gNNLO, DIPHOX and RESBOS;
- SHERPA (v2.2.1), combining $\gamma\gamma$ and $\gamma\gamma + 1$ p at NLO, $\gamma\gamma + 2$ p and $\gamma\gamma + 3$ p at LO and parton shower. ²¹

Photon pair production

- NLO QCD calculations (DIPHOX and RESBOS) are not sufficient;
- NNLO corrections (2gNNLO) improve the description of the data, but it is still insufficient.
- Effects of the infrared emission ($\Delta \phi_{\gamma\gamma} \sim \pi$ and low values of ϕ_{η}^* and a_T) are well reproduced by (RESBOS and SHERPA).
- Very good agreement between data and SHERPA.

Summary and Conclusions

In all the presented results the pQCD predictions describe the data within the theoretical uncertainties.

Jets

- ---- The inclusive jet analysis can be used to constraint the PDFs;
- → First comparison of the measured cross sections with NNLO at 13 TeV;
- → First measurement of di-jet cross sections at 13 TeV;
- → The α_s values from the TEEC and ATEEC measurements in agreement with the world average value (PDG);

Photons

- → Theoretical uncertainties larger than the experimental ones (looking forward to compare with NNLO predictions) in the incl. photon analysis;
- \rightarrow First measurement of the photon + jet production at 13 TeV;
- $\rightarrow \gamma$ +2 and 3 jet dynamics exploited at 8 TeV;
- → Measurements of diphoton production → study the background of $H \rightarrow \gamma \gamma$ (in pQCD);

Thank you for your attention!

Backup

Di-Jet production at 13 TeV

Summary of the p-values obtained from the comparison of the di-jet cross section and the NLO pQCD predictions for various PDFs and for each y^* bin.

	$P_{\rm obs}$						
y^* ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16		
$y^* < 0.5$	79%	59%	50%	71%	71%		
$0.5 \le y^* < 1.0$	27%	23%	19%	32%	31%		
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%		
$1.5 \le y^* < 2.0$	26%	26%	28%	9.9%	25%		
$2.0 \le y^* < 2.5$	43%	35%	31%	4.2%	21%		
$2.5 \le y^* < 3.0$	45%	46%	40%	25%	38%		
all y^* bins	8.1%	5.5%	9.8%	0.1%	4.4%		

ATEEC

TEEC

$\langle Q \rangle ~({\rm GeV})$	$\alpha_{\rm s}(m_Z)$ value (NNPDF 3.0)	$\chi^2/N_{ m dof}$	$\langle Q \rangle \ (\text{GeV})$	$\alpha_{\rm s}(m_Z)$ value (NNPDF 3.0)	$\chi^2/N_{ m dof}$
412	$0.1171 \pm 0.0021 \text{ (exp.)} ^{+0.0081}_{-0.0022} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	24.3 / 21	412	$0.1209 \pm 0.0036 \text{ (exp.)} \stackrel{+0.0085}{_{-0.0031}} \text{ (scale)} \pm 0.0013 \text{ (PDF)} \pm 0.0004 \text{ (NP)}$	10.6 / 10
437	$0.1178 \pm 0.0017 \text{ (exp.)} ^{+0.0073}_{-0.0017} \text{ (scale)} \pm 0.0014 \text{ (PDF)} \pm 0.0002 \text{ (NP)}$	28.3 / 21	437	$0.1211 \pm 0.0026 \text{ (exp.)} \stackrel{+0.0064}{_{-0.0014}} \text{ (scale)} \pm 0.0015 \text{ (PDF)} \pm 0.0010 \text{ (NP)}$	6.8 / 10
472	$0.1177 \pm 0.0017 \text{ (exp.)} ^{+0.0079}_{-0.0023} \text{ (scale)} \pm 0.0015 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	27.7 / 21	472	0.1203 ± 0.0028 (exp.) $^{+0.0060}_{-0.0013}$ (scale) ± 0.0016 (PDF) ± 0.0002 (NP)	8.8 / 10
522	$0.1163 \pm 0.0017 \text{ (exp.)} \stackrel{+0.0067}{_{-0.0016}} \text{ (scale)} \pm 0.0016 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	22.8 / 21	522	0.1196 ± 0.0025 (exp.) $^{+0.0054}_{-0.0010}$ (scale) ± 0.0017 (PDF) ± 0.0004 (NP)	10.9 / 10
604	$0.1181 \pm 0.0017 \text{ (exp.)} \stackrel{+0.0082}{_{-0.0022}} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0005 \text{ (NP)}$	24.3 / 21	604	0.1176 ± 0.0031 (exp.) $^{+0.0058}_{-0.0008}$ (scale) ± 0.0020 (PDF) ± 0.0005 (NP)	6.4 / 10
810	0.1186 ± 0.0023 (exp.) $^{+0.0085}_{-0.0035}$ (scale) ± 0.0020 (PDF) ± 0.0004 (NP)	23.7 / 21	810	$0.1172 \pm 0.0037 \text{ (exp.)} \stackrel{+0.0053}{_{-0.0009}} \text{(scale)} \pm 0.0022 \text{ (PDF)} \pm 0.0001 \text{ (NP)}$	$9.8 \ / \ 10$

Photon reconstruction and identification

- unconverted photon candidates \rightarrow no match with any track
- converted photon candidate \rightarrow match with a converted vertex
 - Unconverted γ

Converted γ

Background sources

The main background sources are π^0 and η two photon decay

Two photon identification criteria ("Loose" and "Tight") are introduced according to the shower shapes in the ATLAS calorimeter system.

Loose and Tight photon candidates are then used in a data-driven method for the background estimation.

Photon isolation

 E_T^{iso} is computed summing the transverse energy of clusters of calorimeter cells in a cone of radius 0.4, excluding the contribution from the photon.

Additional cuts

Selection of unbiased region to measure $|\cos \theta^*|$ and $m^{\gamma-jet}$ cross sections:

 $|\eta^{\gamma} + y^{jet}| < 2.37$ $|\cos \theta^*| < 0.83$ $m^{\gamma - jet} > 450 \text{ GeV}$

The first two requirements avoid the bias induced by the cut on $|\eta^{\gamma}|$ and y^{jet} . The third requirement avoids the bias due to the E_T^{γ} cut in the $(|\cos \theta^*| - m^{\gamma - jet})$ plane.

Photon + Jet at 13 TeV

Photon + Jet at 8 TeV

Photon pair production

Photon pair production

