 $f_1(1285) \rightarrow e^+e^-$ decay and direct f_1 production in e^+e^- collisions

 $A. S.$ Rudenko 1,2

 1 Budker Institute of Nuclear Physics, Novosibirsk, Russia ²Novosibirsk State University

August 22, 2017 / ICNFP 2017, Crete

based on paper arXiv:1707.00545 submitted to Phys. Rev. D

 Ω

 $f_1(1285)$ meson: $I^G(J^{PC})=0^+(1^{++})$

 $m_f = 1282.0 \pm 0.5$ MeV, $\Gamma_f = 24.1 \pm 1.0$ MeV [PDG'16]

 C -even meson $\rightarrow e^+e^-$ decay proceeds via two virtual photons and therefore Γ is suppressed by a factor of α^4

Experimental limits:

\n
$$
\Gamma(\eta'(958) \to e^+e^-) < 0.002 \text{ eV} \text{ (90\% CL)}
$$
\n
$$
\Gamma(f_2(1270) \to e^+e^-) < 0.11 \text{ eV} \text{ (90\% CL)}
$$
\n
$$
\Gamma(a_2(1320) \to e^+e^-) < 0.56 \text{ eV} \text{ (90\% CL)}
$$

Limit on $\Gamma(f_1(1285) \to e^+e^-)$ is still not obtained

The process $e^+e^-\rightarrow f_1\rightarrow mesons$ is planned to be studied at VEPP-2000 e^+e^- collider in Novosibirsk

Simple estimate of $f_1 \rightarrow e^+e^-$ decay width

There is only one P- and C-even invariant amplitude (if $m_e = 0$)

$$
M(f_1 \to e^+e^-) = F_A \alpha^2 \tilde{e}_{\mu} \bar{u} \gamma^{\mu} \gamma^5 v \tag{1}
$$

where F_A is the dimensionless coupling constant.

The decay width:
$$
\Gamma(f_1 \to e^+e^-) = \frac{\alpha^4 |F_A|^2}{12\pi} m_f
$$
 (2)

It is natural to assume that $|F_A|\sim 1 \Rightarrow \Gamma(f_1 \to e^+ e^-) \sim 0.1$ eV

Model-independent description of $f_1 \rightarrow e^+e^-$ amplitude

To calculate $\Gamma(f_1 \to e^+ e^-)$ we should know $f_1 \to \gamma^* \gamma^*$ amplitude.

 $f_1 \rightarrow \gamma^* \gamma^*$ amplitude is parameterized in general by two dimensionless form factors, $F_1(q_1^2,q_2^2)$ and $F_2(q_1^2,q_2^2)$, e.g.

$$
M(f_1 \to \gamma^* \gamma^*) = \frac{\alpha}{m_f^2} F_1(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} q_2^{\rho} e_2^{*\sigma} \tilde{e}^{\tau} (q_1 - q_2)_{\tau} + + \frac{\alpha}{m_f^2} \left\{ F_2(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} \tilde{e}^{\rho} \left[q_2^{\sigma} e_2^{*\lambda} q_{2\lambda} - e_2^{*\sigma} q_2^2 \right] + + F_2(q_2^2, q_1^2) i\epsilon_{\mu\nu\rho\sigma} q_2^{\mu} e_2^{*\nu} \tilde{e}^{\rho} \left[q_1^{\sigma} e_1^{*\lambda} q_{1\lambda} - e_1^{*\sigma} q_1^2 \right] \right\}
$$
(3)

 e_1, e_2 and \widetilde{e} are the polarization vectors of photons and f_1 meson.

 F_1 corresponds to transversal photons (TT) , F_2 describes a combination of TT and LT polarization states. The polarization state LL (when both virtual photons are longitudinal) does not exist.

Model-independent description of $f_1 \rightarrow e^+e^-$ amplitude

$$
M(f_1 \to \gamma^* \gamma^*) = \frac{\alpha}{m_f^2} F_1(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} q_2^{\rho} e_2^{*\sigma} \tilde{e}^{\tau} (q_1 - q_2)_{\tau} + + \frac{\alpha}{m_f^2} \left\{ F_2(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} \tilde{e}^{\rho} \left[q_2^{\sigma} e_2^{*\lambda} q_{2\lambda} - e_2^{*\sigma} q_2^2 \right] + + F_2(q_2^2, q_1^2) i\epsilon_{\mu\nu\rho\sigma} q_2^{\mu} e_2^{*\nu} \tilde{e}^{\rho} \left[q_1^{\sigma} e_1^{*\lambda} q_{1\lambda} - e_1^{*\sigma} q_1^2 \right] \right\}
$$

Due to Bose symmetry form factor $F_1(q_1^2,q_2^2)$ must be antisymmetric, $F_1(q_1^2,q_2^2) = -F_1(q_2^2,q_1^2)$.

 $f_1 \rightarrow \gamma \gamma$ decay is forbidden by Landau-Yang theorem \Rightarrow the amplitude vanishes when both photons are on-shell. The first term vanishes because $F_1(0, 0) = 0$, while all other terms vanish because $q^2=0$ and $e^\lambda q_\lambda=0$ for real photons.

Model-independent description of $f_1 \rightarrow e^+e^-$ amplitude

After substitution of this $f_1 \to \gamma^* \gamma^*$ amplitude into the one-loop diagram:

$$
M(f_1 \to e^+e^-) = -\frac{16\pi i \alpha^2}{m_f^2} \tilde{e}^\mu P^\nu \bar{u} \gamma^\lambda \gamma^5 v \int \frac{d^4 k}{(2\pi)^4} \frac{k_\mu k_\nu k_\lambda}{k^2 q_1^2 q_2^2} F_1(q_1^2, q_2^2) -
$$

$$
-\frac{8\pi i \alpha^2}{m_f^2} \tilde{e}^\mu \bar{u} \gamma^\nu \gamma^5 v \int \frac{d^4 k}{(2\pi)^4} \frac{k_\mu k_\nu}{k^2 q_1^2 q_2^2} \left\{ F_2(q_1^2, q_2^2) q_2^2 + F_2(q_2^2, q_1^2) q_1^2 \right\} +
$$

$$
+\frac{4\pi i \alpha^2}{m_f^2} \tilde{e}_\mu \bar{u} \gamma^\mu \gamma^5 v \int \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2 q_1^2 q_2^2} \times
$$

$$
\times \left\{ F_2(q_1^2, q_2^2) \left[k^2 (p_1 p_2 + p_1 k - p_2 k) - 2q_2^2 (p_1 k) + 2q_2^2 k^2 \right] +
$$

$$
+ F_2(q_2^2, q_1^2) \left[k^2 (p_1 p_2 + p_1 k - p_2 k) + 2q_1^2 (p_2 k) + 2q_1^2 k^2 \right] \right\} \quad (4)
$$

where $q_1 = p_1 - k$ and $q_2 = p_2 + k$.

 2990

One can not calculate $\Gamma(f_1 \to e^+e^-)$ in model-independent way, because explicit form of $F_1(q_1^2,q_2^2)$ and $F_2(q_1^2,q_2^2)$ is unknown. So, we have to choose some reasonable model.

We assume that the main contribution to the amplitude $M(f_1 \rightarrow e^+e^-)$ comes from the diagram, where both virtual photons are coupled with f_1 meson via intermediate ρ^0 mesons.

Arguments for this model $-$ dimensional analysis shows that form factors F_1 and F_2 should decrease rapidly with increasing momentum k in order to avoid divergences in [\(4\)](#page-0-1).

This is the hint that both virtual photons couple with f_1 meson via some massive vector mesons.

In such case form factors F_1 and F_2 behave as $1/k^4$ and the amplitude [\(4\)](#page-0-1) does not diverge.

Experimental data show that one of the main f_1 decay channels, $f_1 \rightarrow 4\pi$ $[\mathcal{B}(f_1 \rightarrow 4\pi) \approx 33\%]$, proceeds mainly via the intermediate $\rho \rho$ state.

Other evidence of this mechanism is a large (5.5%) branching ratio of radiative $f_1 \rightarrow \rho^0 \gamma$ decay.

 200

Some parameters of the model can be constrained from experimental data on $f_1 \rightarrow \rho^0 \gamma$ decay

$$
M(f_1 \to \rho^0 \gamma) = \frac{\alpha}{m_f^2} g_1 i \epsilon_{\mu\nu\rho\sigma} p^{\mu} \epsilon^{*\nu} q^{\rho} e^{*\sigma} \tilde{e}^{\tau} (p - q)_{\tau} - \frac{\alpha m_{\rho}^2}{m_f^2} g_2 i \epsilon_{\mu\nu\rho\sigma} \tilde{e}^{\mu} \epsilon^{*\nu} q^{\rho} e^{*\sigma}
$$
 (5)

This amplitude contains two complex coupling constants, q_1 and q_2 . g_1 corresponds to T polarization state of ρ^0 in the f_1 rest frame, and q_2 corresponds to a combination of L and T polarization states.

The width of $f_1 \rightarrow \rho^0 \gamma$ decay

$$
\Gamma(f_1 \to \rho^0 \gamma) = \frac{\alpha^2}{96\pi} m_f (1 - \xi)^3 \times \times \left[(1 - \xi)^2 |g_1|^2 + \xi (1 + \xi) |g_2|^2 + 2\xi (1 - \xi) |g_1| |g_2| \cos \delta \right] \tag{6}
$$

where $\xi = m_\rho^2/m_f^2 \approx 0.37$

Since the parameters q_1 and q_2 do not correspond to different polarization states, the interference term does not vanish after summation over polarizations, and expression [\(6\)](#page-0-1) contains $\delta = \phi_1 - \phi_2$, which is the relative phase of the complex constants g_1 and g_2 .

In addition to $\Gamma(f_1 \to \rho^0\gamma)$ one more relation was derived from the polarization experiment. The ratio of the contributions of two ρ^0 helicity states, $r = \rho_{LL}/\rho_{TT} = 3.9 \pm 0.9 \pm 1.0$, was determined in the VES experiment from the analysis of angular distributions in the reaction $f_1 \to \rho^0 \gamma \to \pi^+ \pi^- \gamma$:

$$
|M(f_1 \to \rho^0 \gamma \to \pi^+ \pi^- \gamma)|^2 \sim \rho_{LL} \cos^2 \theta + \rho_{TT} \sin^2 \theta \qquad (7)
$$

where ρ_{LL} and ρ_{TT} are density matrix elements corresponding to longitudinal and transverse ρ^0 mesons, respectively; θ is the angle between π^+ and γ momenta in the ρ^0 rest frame. Calculation of $|M(f_1 \to \rho^0 \gamma \to \pi^+ \pi^- \gamma)|^2$ with our amplitude [\(5\)](#page-0-1)

leads to the following ratio of the coefficients at $\cos^2\theta$ and $\sin^2\theta$:

$$
r = \frac{2\xi|g_2|^2}{(1-\xi)^2|g_1|^2 + \xi^2|g_2|^2 + 2\xi(1-\xi)|g_1||g_2|\cos\delta} \qquad (8)
$$

It is possible to find from (6) and (8) the magnitude of coupling constant q_2 ,

$$
\alpha|g_2| = 1.5 \pm 0.2 \tag{9}
$$

However, it is impossible to extract the magnitude of the constant q_1 and/or the phase δ from the experimental data.

Taking into account that $-1 \leq \cos \delta \leq 1$, we obtain

$$
0.16 \lesssim \alpha |g_1| \lesssim 1.9 \tag{10}
$$

つくい

It is seen that there is a large uncertainty in the value of $|q_1|$.

In what follows we treat δ as a free parameter!

Now let us consider $f_1 \to \pi^+\pi^-\pi^+\pi^-$ decay. Experimental data indicate that the main contribution to it is given by the intermediate state with two virtual ρ mesons.

Certainly, the form factors of our model should meet the requirement that the result of calculation of $f_1 \to \pi^+ \pi^- \pi^+ \pi^$ decay width should be in a good agreement with the experiment.

A.S. Rudenko $f_1(1285) \rightarrow e^+e^-$ [decay ...](#page-0-0)

Taking into account all the requirements we write the form factors F_1 and F_2 as

$$
F_1(q_1^2, q_2^2) = \frac{g_1 \cdot g_{\rho\gamma}(m_\rho^2 - im_\rho \Gamma_\rho)(q_2^2 - q_1^2)}{(q_1^2 - m_\rho^2 + im_\rho \Gamma_\rho)(q_2^2 - m_\rho^2 + im_\rho \Gamma_\rho)}
$$
(11)

$$
F_2(q_1^2, q_2^2) = \frac{g_2 \cdot g_{\rho \gamma} (m_\rho^2 - im_\rho \Gamma_\rho)(-m_\rho^2)}{(q_1^2 - m_\rho^2 + im_\rho \Gamma_\rho)(q_2^2 - m_\rho^2 + im_\rho \Gamma_\rho)}
$$
(12)

 $m_\rho=775.26$ MeV, $\Gamma_\rho=147.8$ MeV are ρ^0 -meson mass and width, $g_{\rho\gamma}$ is the coupling constant of the transition $\rho^0\to\gamma^\ast,$ $M(\rho^0\to\gamma^*)=g_{\rho\gamma}(q^2g_{\mu\nu}-q_\mu q_\nu)\epsilon^\mu e^{*\nu}\Rightarrow g_{\rho\gamma}=\sqrt{\frac{3\Gamma(\rho^0\to e^+e^-)}{\alpha m_\rho}}$ $\overline{\vphantom{m}}_{\alpha m_{\rho}} \approx$ 0.06.

 200

Calculation of $f_1 \rightarrow e^+e^-$ decay width

$\mathcal{B}(f_1 \to \pi^+ \pi^- \pi^+ \pi^-)$ in our model

The solid line — $\mathcal{B}(f_1 \to \pi^+ \pi^- \pi^+ \pi^-)$ calculated using the central values: $r=3.9$ and $\mathcal{B}(f_1\to\rho^0\gamma)=5.5\%$. Dashed and dotted lines indicate 1σ deviations. The shaded horizontal band denotes value allowed experimentally, $\mathcal{B}(f_1\to \pi^+\pi^-\pi^+\pi^-) = (1\hskip-3.5pt1_{\scriptstyle\odot}\hskip-3.5pt0^{-0.7}_{\scriptstyle\odot}\hskip-3.5pt0) \,\%$ $\mathcal{B}(f_1\to \pi^+\pi^-\pi^+\pi^-) = (1\hskip-3.5pt1_{\scriptstyle\odot}\hskip-3.5pt0^{-0.7}_{\scriptstyle\odot}\hskip-3.5pt0) \,\%$

Calculation of $f_1 \rightarrow e^+e^-$ decay width

 $\mathcal{B}(f_1 \to e^+e^-)$ in our model

The solid line — $\mathcal{B}(f_1 \to e^+e^-)$ calculated for the central values: $r=3.9$ and $\mathcal{B}(f_1 \to \rho^0 \gamma) = 5.5\%$. The dashed and dotted lines indicate 1σ deviations.

It is seen from the Figures above that in our model the branching ratio $\mathcal{B}(f_1 \to e^+e^-)$ should be taken in the range from $3 \cdot 10^{-9}$ for $\delta \simeq \pi$ to $8 \cdot 10^{-9}$ for $\delta = 0$,

$$
\mathcal{B}(f_1 \to e^+e^-) \simeq (3 \div 8) \cdot 10^{-9} \tag{13}
$$

and the corresponding decay width is

$$
\Gamma(f_1 \to e^+e^-) \simeq 0.07 \div 0.19 \text{ eV} \tag{14}
$$

The naive estimate $\Gamma \sim 0.1$ eV is in good agreement with [\(14\)](#page-16-0).

Estimate of $e^+e^- \to f_1 \to \eta \pi \pi$ cross section

The process $e^+e^-\to f_1\to\eta\pi\pi$ can be used for study of direct f_1 production in e^+e^- collisions.

 $f_1 \rightarrow \eta \pi \pi$ decay proceeds approximately with 70% probability through the intermediate $a_0(980)$ meson.

Using the experimental value for the branching ratio $\mathcal{B}(f_1 \to a_0\pi) = 0.36 \pm 0.07$ and the result of our calculations for $\mathcal{B}(f_1 \to e^+e^-)$, we obtain

$$
\sigma(e^+e^- \to f_1 \to a_0\pi) \simeq 7.8 \div 30 \text{ pb} \tag{15}
$$

Isospin symmetry:

$$
\sigma(e^+e^- \to f_1 \to a_0^{\pm}\pi^{\mp} \to \eta\pi^+\pi^-) \simeq 5.2 \div 20 \text{ pb} \qquad (16)
$$

$$
\sigma(e^+e^- \to f_1 \to a_0^0 \pi^0 \to \eta \pi^0 \pi^0) \simeq 2.6 \div 10 \text{ pb} \tag{17}
$$

 $e^+e^- \to \eta \pi^0 \pi^0$ reaction proceeds only through two-photon annihilation, since C parity of $\eta \pi^0 \pi^0$ final state is positive.

Therefore, there is no background from one-photon annihilation, and $e^+e^-\to f_1\to\eta\pi^0\pi^0$ cross section can be measured directly.

According to our estimate [\(17\)](#page-18-0), the lower bound on this cross section is quite small (\approx 3pb), nevertheless it can be measured at the VEPP-2000 collider in Novosibirsk.

On the contrary, $e^+e^-\to\eta\pi^+\pi^-$ reaction proceeds mainly through one-photon annihilation, which is described quite well by the VMD model with intermediate $\rho'(1450)$ and $\rho^0(770)$ mesons.

The measured $e^+e^- \to \eta\pi^+\pi^-$ Born cross section is about 500 pb at $\sqrt{s} = m_f$. According to our estimate [\(16\)](#page-18-1), $e^+e^-\to f_1\to a_0^{\pm}\pi^{\mp}\to\eta\pi^+\pi^-$ cross section constitutes $\simeq 5.2 \div 20$ pb, so its measurement is rather complicated task.

One possibility to overcome this difficulty is to investigate the two-photon annihilation channel $e^+e^-\to f_1\to\eta\pi^+\pi^-$ through C -odd effects, which arise from interference of C -odd one-photon and C-even two-photon amplitudes.

Charge asymmetry in $e^+e^-\to\eta\pi^+\pi^-$ process

This interference is P - and C -odd, therefore it does not contribute to the total cross section, but it can lead to the charge asymmetry in the differential cross section.

Let us define the charge asymmetry in $e^+e^-\to\eta\pi^+\pi^-$ process as

$$
A = \frac{\sigma_{tot}(\cos \theta_{\pi} > 0) - \sigma_{tot}(\cos \theta_{\pi} < 0)}{\sigma_{tot}(\cos \theta_{\pi} > 0) + \sigma_{tot}(\cos \theta_{\pi} < 0)}\Big|_{\cos \theta_{\eta} > 0}
$$
(18)

Here θ_η is the angle between η meson 3-momentum and e^+ beam axis in the e^+e^- center-of-mass frame, θ_π is the angle between π^+ meson and η meson 3-momenta in the $\pi^+\pi^-$ center-of-mass system.

Charge asymmetry — different numbers of π^+ and π^- mesons propagating in some direction.

Charge asymmetry in $e^+e^-\to\eta\pi^+\pi^-$ process

The interference term contains one additional free parameter ϕ – relative phase arising from the complex coupling constants,

$$
F_{A}g_{f\pi a}g_{a\pi\eta}f_{\rho\pi\pi}^{*} = |F_{A}g_{f\pi a}g_{a\pi\eta}f_{\rho\pi\pi}|e^{i\phi} \qquad (19)
$$

Conclusions

- The width of $f_1(1285) \rightarrow e^+e^-$ decay is calculated in the vector meson dominance model. The result depends on the relative phase δ between two coupling constants describing $f_1 \rightarrow \rho^0 \gamma$ decay, $\Gamma(f_1 \to e^+e^-) \simeq 0.07 \div 0.19$ eV $[\mathcal{B}(f_1 \to e^+e^-) \simeq (3 \div 8) \cdot 10^{-9}]$
- **•** In our model $\sigma(e^+e^-\to f_1\to a_0^{\pm}\pi^{\mp}\to\eta\pi^+\pi^-)\simeq 5.2\div 20\,\,\mathrm{pb},\text{ and}$ $\sigma(e^+e^- \to f_1 \to a_0^0 \pi^0 \to \eta \pi^0 \pi^0) \simeq 2.6 \div 10 \text{ pb}$
- $e^+e^-\to f_1\to\eta\pi^0\pi^0$ cross section can be measured directly.
- Measurement of $e^+e^-\to f_1\to\eta\pi^+\pi^-$ cross section is rather complicated task, because of background from the one-photon annihilation \Rightarrow to investigate the charge asymmetry. It may be quite large, up to $\pm 10\%$

 200

Backup

$$
M(f_1 \to \rho^{0*} \rho^{0*}) = \frac{1}{m_f^2} h_1(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} q_2^{\rho} e_2^{*\sigma} \tilde{e}^{\tau} (q_1 - q_2)_{\tau} + + \frac{1}{m_f^2} \left\{ h_2(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} \tilde{e}^{\rho} \left[q_2^{\sigma} e_2^{*\lambda} q_{2\lambda} - e_2^{*\sigma} q_2^2 \right] + + h_2(q_2^2, q_1^2) i\epsilon_{\mu\nu\rho\sigma} q_2^{\mu} e_2^{*\nu} \tilde{e}^{\rho} \left[q_1^{\sigma} e_1^{*\lambda} q_{1\lambda} - e_1^{*\sigma} q_1^2 \right] \right\}
$$
(20)

$$
\alpha F_{1,2}(q_1^2, q_2^2) = \frac{g_{\rho\gamma}^2 q_1^2 q_2^2}{(q_1^2 - m_\rho^2 + i m_\rho \Gamma_\rho)(q_2^2 - m_\rho^2 + i m_\rho \Gamma_\rho)} h_{1,2}(q_1^2, q_2^2)
$$
\n(21)

$$
\lim_{q_2^2 \to 0} q_2^2 h_1(m_\rho^2, q_2^2) = -\frac{\alpha g_1}{g_{\rho \gamma}} \left(m_\rho^2 - i m_\rho \Gamma_\rho \right) \tag{22}
$$

$$
\lim_{q_2^2 \to 0} q_2^2 h_2(q_2^2, m_\rho^2) = -\frac{\alpha g_2}{g_{\rho \gamma}} \left(m_\rho^2 - i m_\rho \Gamma_\rho \right) \tag{23}
$$

A.S. Rudenko $f_1(1285) \rightarrow e^+e^-$ [decay ...](#page-0-0)

$$
F_A \simeq -\alpha g_1 \left(0.22 + 0.25i \right) - \alpha g_2 \left(0.75 + 0.57i \right) \tag{24}
$$

$$
|F_A|^2 \simeq \left| e^{i\delta} \cdot \alpha |g_1| \cdot (0.22 + 0.25i) + \alpha |g_2| \cdot (0.75 + 0.57i) \right|^2 \tag{25}
$$

A.S. Rudenko $f_1(1285) \rightarrow e^+e^-$ [decay ...](#page-0-0)

K ロ K K 御 K K 君 K K 君 K …

重

 299