$f_1(1285) \rightarrow e^+e^-$ decay and direct f_1 production in e^+e^- collisions

A.S. Rudenko 1,2

¹Budker Institute of Nuclear Physics, Novosibirsk, Russia ²Novosibirsk State University

August 22, 2017 / ICNFP 2017, Crete

based on paper arXiv:1707.00545 submitted to Phys. Rev. D $f_1(1285)$ meson: $I^G(J^{PC}) = 0^+(1^{++})$

 $m_f = 1282.0 \pm 0.5$ MeV, $\Gamma_f = 24.1 \pm 1.0$ MeV [PDG'16]

 $C\text{-even meson}\to e^+e^-$ decay proceeds via two virtual photons and therefore Γ is suppressed by a factor of α^4

 $\begin{array}{l} \mbox{Experimental limits:} \\ \Gamma(\eta'(958) \rightarrow e^+e^-) < 0.002 \mbox{ eV (90\% CL)} \\ \Gamma(f_2(1270) \rightarrow e^+e^-) < 0.11 \mbox{ eV (90\% CL)} \\ \Gamma(a_2(1320) \rightarrow e^+e^-) < 0.56 \mbox{ eV (90\% CL)} \end{array}$

Limit on $\Gamma(f_1(1285) \rightarrow e^+e^-)$ is still not obtained

The process $e^+e^- \rightarrow f_1 \rightarrow mesons$ is planned to be studied at VEPP-2000 e^+e^- collider in Novosibirsk

Simple estimate of $f_1 \rightarrow e^+e^-$ decay width

There is only one P- and C-even invariant amplitude (if $m_e=0$)

$$M(f_1 \to e^+ e^-) = F_A \alpha^2 \tilde{e}_\mu \bar{u} \gamma^\mu \gamma^5 v \tag{1}$$

where F_A is the dimensionless coupling constant.

The decay width:
$$\Gamma(f_1 \rightarrow e^+ e^-) = \frac{lpha^4 |F_A|^2}{12\pi} m_f$$
 (2)

It is natural to assume that $|F_A| \sim 1 \Rightarrow \Gamma(f_1 o e^+e^-) \sim 0.1$ eV

Model-independent description of $f_1 \rightarrow e^+e^-$ amplitude

To calculate $\Gamma(f_1 \to e^+ e^-)$ we should know $f_1 \to \gamma^* \gamma^*$ amplitude.

 $f_1 \rightarrow \gamma^* \gamma^*$ amplitude is parameterized in general by two dimensionless form factors, $F_1(q_1^2,q_2^2)$ and $F_2(q_1^2,q_2^2)$, e.g.

$$M(f_{1} \to \gamma^{*}\gamma^{*}) = \frac{\alpha}{m_{f}^{2}} F_{1}(q_{1}^{2}, q_{2}^{2}) i\epsilon_{\mu\nu\rho\sigma} q_{1}^{\mu} e_{1}^{*\nu} q_{2}^{\rho} e_{2}^{*\sigma} \widetilde{e}^{\tau} (q_{1} - q_{2})_{\tau} + + \frac{\alpha}{m_{f}^{2}} \left\{ F_{2}(q_{1}^{2}, q_{2}^{2}) i\epsilon_{\mu\nu\rho\sigma} q_{1}^{\mu} e_{1}^{*\nu} \widetilde{e}^{\rho} \left[q_{2}^{\sigma} e_{2}^{*\lambda} q_{2\lambda} - e_{2}^{*\sigma} q_{2}^{2} \right] + + F_{2}(q_{2}^{2}, q_{1}^{2}) i\epsilon_{\mu\nu\rho\sigma} q_{2}^{\mu} e_{2}^{*\nu} \widetilde{e}^{\rho} \left[q_{1}^{\sigma} e_{1}^{*\lambda} q_{1\lambda} - e_{1}^{*\sigma} q_{1}^{2} \right] \right\}$$
(3)

 e_1 , e_2 and \widetilde{e} are the polarization vectors of photons and f_1 meson.

 F_1 corresponds to transversal photons (TT), F_2 describes a combination of TT and LT polarization states. The polarization state LL (when both virtual photons are longitudinal) does not exist.

Model-independent description of $f_1 \rightarrow e^+e^-$ amplitude

$$\begin{split} M(f_1 \to \gamma^* \gamma^*) &= \frac{\alpha}{m_f^2} F_1(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} q_2^{\rho} e_2^{*\sigma} \tilde{e}^{\tau} (q_1 - q_2)_{\tau} + \\ &+ \frac{\alpha}{m_f^2} \left\{ F_2(q_1^2, q_2^2) i\epsilon_{\mu\nu\rho\sigma} q_1^{\mu} e_1^{*\nu} \tilde{e}^{\rho} \left[q_2^{\sigma} e_2^{*\lambda} q_{2\lambda} - e_2^{*\sigma} q_2^2 \right] + \\ &+ F_2(q_2^2, q_1^2) i\epsilon_{\mu\nu\rho\sigma} q_2^{\mu} e_2^{*\nu} \tilde{e}^{\rho} \left[q_1^{\sigma} e_1^{*\lambda} q_{1\lambda} - e_1^{*\sigma} q_1^2 \right] \right\} \end{split}$$

Due to Bose symmetry form factor $F_1(q_1^2, q_2^2)$ must be antisymmetric, $F_1(q_1^2, q_2^2) = -F_1(q_2^2, q_1^2)$.

 $f_1 \rightarrow \gamma \gamma$ decay is forbidden by Landau-Yang theorem \Rightarrow the amplitude vanishes when both photons are on-shell. The first term vanishes because $F_1(0,0) = 0$, while all other terms vanish because $q^2 = 0$ and $e^{\lambda}q_{\lambda} = 0$ for real photons.

Model-independent description of $f_1 \rightarrow e^+e^-$ amplitude

After substitution of this $f_1 \rightarrow \gamma^* \gamma^*$ amplitude into the one-loop diagram:

$$\begin{split} M(f_{1} \to e^{+}e^{-}) &= -\frac{16\pi i\alpha^{2}}{m_{f}^{2}} \widetilde{e}^{\mu}P^{\nu} \overline{u}\gamma^{\lambda}\gamma^{5}v \int \frac{d^{4}k}{(2\pi)^{4}} \frac{k_{\mu}k_{\nu}k_{\lambda}}{k^{2}q_{1}^{2}q_{2}^{2}} F_{1}(q_{1}^{2}, q_{2}^{2}) - \\ &- \frac{8\pi i\alpha^{2}}{m_{f}^{2}} \widetilde{e}^{\mu} \overline{u}\gamma^{\nu}\gamma^{5}v \int \frac{d^{4}k}{(2\pi)^{4}} \frac{k_{\mu}k_{\nu}}{k^{2}q_{1}^{2}q_{2}^{2}} \left\{ F_{2}(q_{1}^{2}, q_{2}^{2})q_{2}^{2} + F_{2}(q_{2}^{2}, q_{1}^{2})q_{1}^{2} \right\} + \\ &+ \frac{4\pi i\alpha^{2}}{m_{f}^{2}} \widetilde{e}_{\mu} \overline{u}\gamma^{\mu}\gamma^{5}v \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{k^{2}q_{1}^{2}q_{2}^{2}} \times \\ &\times \left\{ F_{2}(q_{1}^{2}, q_{2}^{2}) \left[k^{2}(p_{1}p_{2} + p_{1}k - p_{2}k) - 2q_{2}^{2}(p_{1}k) + 2q_{2}^{2}k^{2} \right] + \\ &+ F_{2}(q_{2}^{2}, q_{1}^{2}) \left[k^{2}(p_{1}p_{2} + p_{1}k - p_{2}k) + 2q_{1}^{2}(p_{2}k) + 2q_{1}^{2}k^{2} \right] \right\}$$

where $q_1 = p_1 - k$ and $q_2 = p_2 + k$.

One can not calculate $\Gamma(f_1 \to e^+e^-)$ in model-independent way, because explicit form of $F_1(q_1^2, q_2^2)$ and $F_2(q_1^2, q_2^2)$ is unknown. So, we have to choose some reasonable model.

We assume that the main contribution to the amplitude $M(f_1 \rightarrow e^+e^-)$ comes from the diagram, where both virtual photons are coupled with f_1 meson via intermediate ρ^0 mesons.

Arguments for this model — dimensional analysis shows that form factors F_1 and F_2 should decrease rapidly with increasing momentum k in order to avoid divergences in (4).

This is the hint that both virtual photons couple with f_1 meson via some massive vector mesons.

In such case form factors F_1 and F_2 behave as $1/k^4$ and the amplitude (4) does not diverge.

Experimental data show that one of the main f_1 decay channels, $f_1 \rightarrow 4\pi \ [\mathcal{B}(f_1 \rightarrow 4\pi) \approx 33\%]$, proceeds mainly via the intermediate $\rho\rho$ state.

Other evidence of this mechanism is a large (5.5%) branching ratio of radiative $f_1 \rightarrow \rho^0 \gamma$ decay.

Some parameters of the model can be constrained from experimental data on $f_1\to\rho^0\gamma$ decay

$$M(f_1 \to \rho^0 \gamma) = \frac{\alpha}{m_f^2} g_1 i \epsilon_{\mu\nu\rho\sigma} p^{\mu} \epsilon^{*\nu} q^{\rho} e^{*\sigma} \tilde{e}^{\tau} (p-q)_{\tau} - \frac{\alpha m_{\rho}^2}{m_f^2} g_2 i \epsilon_{\mu\nu\rho\sigma} \tilde{e}^{\mu} \epsilon^{*\nu} q^{\rho} e^{*\sigma}$$
(5)

This amplitude contains two complex coupling constants, g_1 and g_2 . g_1 corresponds to T polarization state of ρ^0 in the f_1 rest frame, and g_2 corresponds to a combination of L and T polarization states.

The width of $f_1
ightarrow
ho^0 \gamma$ decay

$$\Gamma(f_1 \to \rho^0 \gamma) = \frac{\alpha^2}{96\pi} m_f (1-\xi)^3 \times \\ \times \left[(1-\xi)^2 |g_1|^2 + \xi (1+\xi) |g_2|^2 + 2\xi (1-\xi) |g_1| |g_2| \cos \delta \right]$$
(6)

where $\xi = m_
ho^2/m_f^2 pprox 0.37$

Since the parameters g_1 and g_2 do not correspond to different polarization states, the interference term does not vanish after summation over polarizations, and expression (6) contains $\delta = \phi_1 - \phi_2$, which is the relative phase of the complex constants g_1 and g_2 .

In addition to $\Gamma(f_1 \to \rho^0 \gamma)$ one more relation was derived from the polarization experiment. The ratio of the contributions of two ρ^0 helicity states, $r = \rho_{LL}/\rho_{TT} = 3.9 \pm 0.9 \pm 1.0$, was determined in the VES experiment from the analysis of angular distributions in the reaction $f_1 \to \rho^0 \gamma \to \pi^+ \pi^- \gamma$:

$$|M(f_1 \to \rho^0 \gamma \to \pi^+ \pi^- \gamma)|^2 \sim \rho_{LL} \cos^2 \theta + \rho_{TT} \sin^2 \theta \quad (7)$$

where ρ_{LL} and ρ_{TT} are density matrix elements corresponding to longitudinal and transverse ρ^0 mesons, respectively; θ is the angle between π^+ and γ momenta in the ρ^0 rest frame. Calculation of $|M(f_1 \to \rho^0 \gamma \to \pi^+ \pi^- \gamma)|^2$ with our amplitude (5) leads to the following ratio of the coefficients at $\cos^2 \theta$ and $\sin^2 \theta$:

$$r = \frac{2\xi |g_2|^2}{(1-\xi)^2 |g_1|^2 + \xi^2 |g_2|^2 + 2\xi (1-\xi) |g_1| |g_2| \cos \delta}$$
(8)

It is possible to find from (6) and (8) the magnitude of coupling constant g_2 ,

$$\alpha |g_2| = 1.5 \pm 0.2 \tag{9}$$

However, it is impossible to extract the magnitude of the constant g_1 and/or the phase δ from the experimental data.

Taking into account that $-1 \leq \cos \delta \leq 1$, we obtain

$$0.16 \lesssim \alpha |g_1| \lesssim 1.9 \tag{10}$$

It is seen that there is a large uncertainty in the value of $|g_1|$.

In what follows we treat δ as a free parameter!

Now let us consider $f_1 \rightarrow \pi^+\pi^-\pi^+\pi^-$ decay. Experimental data indicate that the main contribution to it is given by the intermediate state with two virtual ρ mesons.

Certainly, the form factors of our model should meet the requirement that the result of calculation of $f_1 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ decay width should be in a good agreement with the experiment.

Taking into account all the requirements we write the form factors ${\cal F}_1$ and ${\cal F}_2$ as

$$F_1(q_1^2, q_2^2) = \frac{g_1 \cdot g_{\rho\gamma}(m_\rho^2 - im_\rho\Gamma_\rho)(q_2^2 - q_1^2)}{(q_1^2 - m_\rho^2 + im_\rho\Gamma_\rho)(q_2^2 - m_\rho^2 + im_\rho\Gamma_\rho)}$$
(11)

$$F_2(q_1^2, q_2^2) = \frac{g_2 \cdot g_{\rho\gamma}(m_\rho^2 - im_\rho\Gamma_\rho)(-m_\rho^2)}{(q_1^2 - m_\rho^2 + im_\rho\Gamma_\rho)(q_2^2 - m_\rho^2 + im_\rho\Gamma_\rho)}$$
(12)

 $m_{\rho} = 775.26$ MeV, $\Gamma_{\rho} = 147.8$ MeV are ρ^{0} -meson mass and width, $g_{\rho\gamma}$ is the coupling constant of the transition $\rho^{0} \rightarrow \gamma^{*}$, $M(\rho^{0} \rightarrow \gamma^{*}) = g_{\rho\gamma}(q^{2}g_{\mu\nu} - q_{\mu}q_{\nu})\epsilon^{\mu}e^{*\nu} \Rightarrow g_{\rho\gamma} = \sqrt{\frac{3\Gamma(\rho^{0} \rightarrow e^{+}e^{-})}{\alpha m_{\rho}}} \approx 0.06.$

Calculation of $f_1 \rightarrow e^+e^-$ decay width

$\mathcal{B}(f_1 ightarrow \pi^+\pi^-\pi^+\pi^-)$ in our model

The solid line — $\mathcal{B}(f_1 \to \pi^+ \pi^- \pi^+ \pi^-)$ calculated using the central values: r = 3.9 and $\mathcal{B}(f_1 \to \rho^0 \gamma) = 5.5\%$. Dashed and dotted lines indicate 1σ deviations. The shaded horizontal band denotes value allowed experimentally, $\mathcal{B}(f_1 \to \pi^+ \pi^- \pi^+ \pi^-) = (11.0^{+0.7}_{-0.6})\%$.

Calculation of $f_1 \rightarrow e^+e^-$ decay width

 $\mathcal{B}(f_1 \to e^+ e^-)$ in our model

The solid line — $\mathcal{B}(f_1 \to e^+e^-)$ calculated for the central values: r = 3.9 and $\mathcal{B}(f_1 \to \rho^0 \gamma) = 5.5\%$. The dashed and dotted lines indicate 1σ deviations. It is seen from the Figures above that in our model the branching ratio $\mathcal{B}(f_1 \to e^+ e^-)$ should be taken in the range from $3 \cdot 10^{-9}$ for $\delta \simeq \pi$ to $8 \cdot 10^{-9}$ for $\delta = 0$,

$$\mathcal{B}(f_1 \to e^+ e^-) \simeq (3 \div 8) \cdot 10^{-9}$$
 (13)

and the corresponding decay width is

$$\Gamma(f_1 \to e^+ e^-) \simeq 0.07 \div 0.19 \text{ eV}$$
 (14)

The naive estimate $\Gamma \sim 0.1$ eV is in good agreement with (14).

Estimate of $e^+e^- \rightarrow f_1 \rightarrow \eta \pi \pi$ cross section

The process $e^+e^- \rightarrow f_1 \rightarrow \eta \pi \pi$ can be used for study of direct f_1 production in e^+e^- collisions.

 $f_1\to\eta\pi\pi$ decay proceeds approximately with 70% probability through the intermediate $a_0(980)$ meson.

Using the experimental value for the branching ratio $\mathcal{B}(f_1 \to a_0 \pi) = 0.36 \pm 0.07$ and the result of our calculations for $\mathcal{B}(f_1 \to e^+ e^-)$, we obtain

$$\sigma(e^+e^- \to f_1 \to a_0\pi) \simeq 7.8 \div 30 \text{ pb}$$
(15)

lsospin symmetry:

$$\sigma(e^+e^- \to f_1 \to a_0^{\pm}\pi^{\mp} \to \eta\pi^+\pi^-) \simeq 5.2 \div 20 \text{ pb}$$
 (16)

$$\sigma(e^+e^- \to f_1 \to a_0^0 \pi^0 \to \eta \pi^0 \pi^0) \simeq 2.6 \div 10 \text{ pb}$$
 (17)

 $e^+e^- \rightarrow \eta \pi^0 \pi^0$ reaction proceeds only through two-photon annihilation, since C parity of $\eta \pi^0 \pi^0$ final state is positive.

Therefore, there is no background from one-photon annihilation, and $e^+e^- \rightarrow f_1 \rightarrow \eta \pi^0 \pi^0$ cross section can be measured directly.

According to our estimate (17), the lower bound on this cross section is quite small ($\approx 3pb$), nevertheless it can be measured at the VEPP-2000 collider in Novosibirsk.

On the contrary, $e^+e^- \rightarrow \eta \pi^+\pi^-$ reaction proceeds mainly through one-photon annihilation, which is described quite well by the VMD model with intermediate $\rho'(1450)$ and $\rho^0(770)$ mesons.

The measured $e^+e^- \rightarrow \eta \pi^+\pi^-$ Born cross section is about 500 pb at $\sqrt{s} = m_f$. According to our estimate (16), $e^+e^- \rightarrow f_1 \rightarrow a_0^{\pm}\pi^{\mp} \rightarrow \eta \pi^+\pi^-$ cross section constitutes $\simeq 5.2 \div 20$ pb, so its measurement is rather complicated task.

One possibility to overcome this difficulty is to investigate the two-photon annihilation channel $e^+e^- \rightarrow f_1 \rightarrow \eta \pi^+\pi^-$ through C-odd effects, which arise from interference of C-odd one-photon and C-even two-photon amplitudes.

Charge asymmetry in $e^+e^- \rightarrow \eta \pi^+\pi^-$ process

This interference is P- and C-odd, therefore it does not contribute to the total cross section, but it can lead to the charge asymmetry in the differential cross section.

Let us define the charge asymmetry in $e^+e^- \to \eta \pi^+\pi^-$ process as

$$A = \left. \frac{\sigma_{tot}(\cos \theta_{\pi} > 0) - \sigma_{tot}(\cos \theta_{\pi} < 0)}{\sigma_{tot}(\cos \theta_{\pi} > 0) + \sigma_{tot}(\cos \theta_{\pi} < 0)} \right|_{\cos \theta_{\eta} > 0}$$
(18)

Here θ_{η} is the angle between η meson 3-momentum and e^+ beam axis in the e^+e^- center-of-mass frame, θ_{π} is the angle between π^+ meson and η meson 3-momenta in the $\pi^+\pi^-$ center-of-mass system.

Charge asymmetry — different numbers of π^+ and π^- mesons propagating in some direction.

Charge asymmetry in $e^+e^- \rightarrow \eta \pi^+\pi^-$ process

The interference term contains one additional free parameter ϕ – relative phase arising from the complex coupling constants,

$$F_A g_{f\pi a} g_{a\pi\eta} f^*_{\rho\pi\pi} = |F_A g_{f\pi a} g_{a\pi\eta} f_{\rho\pi\pi}| e^{i\phi}$$
(19)

Charge asymmetry in $e^+e^- \rightarrow \eta \pi^+\pi^-$ process may be up to $\pm 10\%$

A.S. Rudenko $f_1(1285) \rightarrow e^+e^-$ decay ...

Conclusions

- The width of $f_1(1285) \rightarrow e^+e^-$ decay is calculated in the vector meson dominance model. The result depends on the relative phase δ between two coupling constants describing $f_1 \rightarrow \rho^0 \gamma$ decay, $\Gamma(f_1 \rightarrow e^+e^-) \simeq 0.07 \div 0.19 \text{ eV}$ $[\mathcal{B}(f_1 \rightarrow e^+e^-) \simeq (3 \div 8) \cdot 10^{-9}]$
- In our model $\begin{aligned} \sigma(e^+e^- \to f_1 \to a_0^{\pm}\pi^{\mp} \to \eta\pi^+\pi^-) \simeq 5.2 \div 20 \text{ pb, and} \\ \sigma(e^+e^- \to f_1 \to a_0^0\pi^0 \to \eta\pi^0\pi^0) \simeq 2.6 \div 10 \text{ pb} \end{aligned}$
- $e^+e^-
 ightarrow f_1
 ightarrow \eta \pi^0 \pi^0$ cross section can be measured directly.
- Measurement of $e^+e^- \rightarrow f_1 \rightarrow \eta \pi^+\pi^-$ cross section is rather complicated task, because of background from the one-photon annihilation \Rightarrow to investigate the charge asymmetry. It may be quite large, up to $\pm 10\%$

Backup

$$M(f_{1} \to \rho^{0*} \rho^{0*}) = \frac{1}{m_{f}^{2}} h_{1}(q_{1}^{2}, q_{2}^{2}) i\epsilon_{\mu\nu\rho\sigma} q_{1}^{\mu} e_{1}^{*\nu} q_{2}^{\rho} e_{2}^{*\sigma} \widetilde{e}^{\tau} (q_{1} - q_{2})_{\tau} + \frac{1}{m_{f}^{2}} \left\{ h_{2}(q_{1}^{2}, q_{2}^{2}) i\epsilon_{\mu\nu\rho\sigma} q_{1}^{\mu} e_{1}^{*\nu} \widetilde{e}^{\rho} \left[q_{2}^{\sigma} e_{2}^{*\lambda} q_{2\lambda} - e_{2}^{*\sigma} q_{2}^{2} \right] + h_{2}(q_{2}^{2}, q_{1}^{2}) i\epsilon_{\mu\nu\rho\sigma} q_{2}^{\mu} e_{2}^{*\nu} \widetilde{e}^{\rho} \left[q_{1}^{\sigma} e_{1}^{*\lambda} q_{1\lambda} - e_{1}^{*\sigma} q_{1}^{2} \right] \right\}$$
(20)

$$\alpha F_{1,2}(q_1^2, q_2^2) = \frac{g_{\rho\gamma}^2 q_1^2 q_2^2}{(q_1^2 - m_\rho^2 + im_\rho \Gamma_\rho)(q_2^2 - m_\rho^2 + im_\rho \Gamma_\rho)} h_{1,2}(q_1^2, q_2^2)$$
(21)

$$\lim_{q_2^2 \to 0} q_2^2 h_1(m_{\rho}^2, q_2^2) = -\frac{\alpha g_1}{g_{\rho\gamma}} \left(m_{\rho}^2 - im_{\rho} \Gamma_{\rho} \right)$$
(22)

$$\lim_{q_2^2 \to 0} q_2^2 h_2(q_2^2, m_{\rho}^2) = -\frac{\alpha g_2}{g_{\rho\gamma}} \left(m_{\rho}^2 - im_{\rho} \Gamma_{\rho} \right)$$
(23)

A.S. Rudenko $f_1(1285) \rightarrow e^+ e^-$ decay ...

$$F_A \simeq -\alpha g_1 \left(0.22 + 0.25i \right) - \alpha g_2 \left(0.75 + 0.57i \right)$$
 (24)

$$|F_A|^2 \simeq \left| e^{i\delta} \cdot \alpha |g_1| \cdot (0.22 + 0.25i) + \alpha |g_2| \cdot (0.75 + 0.57i) \right|^2$$
(25)

A.S. Rudenko $f_1(1285) \rightarrow e^+e^-$ decay ...

æ

Э