Standard Model Measurements with CMS

Norbert Neumeister

On behalf of the CMS Collaboration
Outline

• Introduction
• QCD
 – Inclusive jet cross sections
 – Di-jet cross sections
 – PDF constraints
 – Measurement of α_s
 – 2-, 3-, 4-jet azimuthal correlations
• Electroweak
 – Inclusive Z/W production
 – Z/W + jets
 – Differential cross sections and PDFs
 – Di-boson production
 – aTGC and aQGC
• Summary
Introduction

- **SM precision measurements are important at the LHC**
 - test a wide range of QCD and EW predictions to the highest energies available
 - tune theoretical calculations and MC generators
 - provide precise modeling of backgrounds to many searches

- any deviation from the SM expectation may be a sign of new physics!

CMS Preliminary

August 2017

Test of the SM over ~10 orders of magnitude

- 7 TeV CMS measurement ($L \leq 5.0 \text{ fb}^{-1}$)
- 8 TeV CMS measurement ($L \leq 19.6 \text{ fb}^{-1}$)
- 13 TeV CMS measurement ($L \leq 35.9 \text{ fb}^{-1}$)

Theory prediction

CMS 95%CL limits at 7, 8 and 13 TeV

All results at: http://cern.ch/go/pNj7

Norbert Neumeister - Purdue University

ICNFP2017
LHC Performance

• About 40 fb\(^{-1}\) has been delivered by the LHC in 2016, exceeding the integrated luminosity accumulated in all years before 2016 and expectations.

• The CMS detectors has been working spectacularly with virtually no degradation in performance over the 3 years of Run 1 and 2 years of Run 2.

• 7 TeV: 6 fb\(^{-1}\) (2010-11)
• 8 TeV: 23 fb\(^{-1}\) (2012)
• 13 TeV: 4 fb\(^{-1}\) (2015) + 40 fb\(^{-1}\) (2016)
Inclusive Jet Production

- Double and triple-differential jet cross section measurements at 8 TeV and 13 TeV
 - Use anti-k_T clustering algorithm with $R = 0.7$ or 0.4 → test radiative and non-perturbative effects
 - 7 orders of magnitude, for jet p_T up to ~ 2 TeV and $|y|=4.7$
 - Good agreement with NLO QCD predictions + NLO EW + non-perturbative calculations
Di-Jet Production

• Triple differential cross sections \((p_{T, \text{avg}}, y^*, y_b) \), sensitive to different subprocesses and overlapping \((x,Q)\) regions in PDFs

• Compared to NLOJet++ (with non-perturbative and EW effects)
 – in agreement with NLO predictions
 – used to constraint PDFs
 – used to extract \(\alpha_s \)

\[
y^* = \frac{1}{2} |y_1 - y_2|
\]

\[
y_b = \frac{1}{2} |y_1 + y_2|
\]
Jet Mass Measurement

- Jet mass is sensitive to internal structure of jets
- Double-differential jet cross section measured as a function of the jet mass and jet p_T in events with a dijet topology
 - with and without a jet grooming algorithm applied that removes low-energy portions from a jet.
 - for ungroomed jets, all Monte Carlo event generators are found to predict the jet mass spectrum within uncertainties in the data for intermediate masses of about 10-30% of the jet transverse momentum.
PDF Constraints

- Considering high $|y_1 + y_2|$, high p_T allows access to high x values
 - Constrain PDF at high x (theory uncertainties are larger than experimental)
 - Reduces PDF uncertainties, specially the gluon PDF, in the boosted regime (high $|y_1+y_2|$, high p_T), where large x are probed
 - It also changes the gluon PDF shape for low Q^2

![PDF Constraints Diagram](image-url)
Measurement of α_s

- Use ratio of inclusive two- and three-jet event cross sections (R_{32}) to extract α_s at M_Z

 - Minimize χ^2 of the fit of theoretical predictions to data

$\alpha_s(M_Z) = 0.1150 \pm 0.0010 \text{ (exp)} \pm 0.0013 \text{ (PDF)} \pm 0.0015 \text{ (NP)} - 0.0000 \pm 0.0050 \text{ (scale)}$
2-3-4-Jet Azimuthal Correlations

- Normalized differential cross-section in $\Delta \phi_{1,2}$ of the two leading p_T jets in inclusive 2-, 3-, 4- jets, and in $\Delta \phi_{2j\text{min}}$, the minimum azimuthal angular separation between any two jets in 3-, 4- jet topologies.
 - Sensitive to the radiation of additional jets.
 - Probes the dynamics of multijet production.
 - Results compared to LO and NLO MC generators with various PS tunes.
Improved description from NLO

Herwig7 describes the $\Delta\phi_{1,2}$ cross sections best, while PH2J (POWHEG matched to Herwig++ or Pythia8) describes the $\Delta\phi_{2j}^{\text{min}}$ data best.
Inclusive W/Z Production

• **W and Z decays are special final states:**
 – They are theoretically well understood, unique signatures and have high rate
 – Experimentally the $W \rightarrow l\nu$ and $Z \rightarrow ll$ channels are among the cleanest final states that we can exploit at hadron colliders
 – They are used to understand and calibrate the detector response (trigger, identification, resolution, efficiencies)
 – They are dominant signal and/or background in many searches for new particles

• **Constraints for Parton Distribution Functions**
 – Key ingredient to make theoretical predictions at hadron colliders
 – LHC probes gluons and sea quarks

• **With W/Z we can probe different aspects of QCD calculations**
 – Tests of perturbative QCD and parton emission in a new energy regime
 – Tune Monte Carlo generators in order to better describe the data
Inclusive W/Z Production

- W and Z production at LHC proceeds at the hard scattering level and at first order via collisions of a valence quark (u,d) and a sea anti-quark (Q ≈ 100 GeV):
 \[u + \overline{d}(s) \rightarrow W^+ \quad u + \overline{u} \rightarrow Z \]
 \[d + \overline{u}(c) \rightarrow W^- \quad d + \overline{d} \rightarrow Z \]

- Since parton fractions in this process are typically \(10^{-3} < x < 10^{-1}\), sea-sea qq contributions are also important.

- Provide access to central parameters for global EWK fit (masses, couplings, asymmetries).

- Provide powerful constraints for non-perturbative part (PDFs, tunes).

Purdue University
W and Z Production

- Inclusive W and Z cross section measurements at 7, 8, and 13 TeV
 - Good agreement with NNLO
- Building blocks for a number of physics analyses
 - V+b/c, differential cross sections and many others

CMS-PAS-SMP-15-004
arXiv:1612.03016
Inclusive W Cross Section

- Inclusive W/Z cross sections are measured at $\sqrt{s} = 13\text{ TeV}$, $\int L = 43\text{ pb}^{-1}$
- Electron ($E_T > 25\text{ GeV}$, $|\eta| < 2.5$) and muon ($p_T > 25\text{ GeV}$, $|\eta| < 2.4$) used
- MET fit is used for W^+ and W^- signal extraction, respectively
 - Main background is QCD
 - $W \rightarrow \tau\nu$, Drell-Yan, diboson and top-pair production

\[
\sigma(pp \rightarrow W^+ X) \times \mathcal{B}(W^+ \rightarrow \ell^+\nu) = 11370 \pm 50(\text{stat}) \pm 230(\text{syst}) \pm 550(\text{lumi}) \text{ pb}
\]
\[
\sigma(pp \rightarrow W^- X) \times \mathcal{B}(W^- \rightarrow \ell^-\bar{\nu}) = 8580 \pm 50(\text{stat}) \pm 160(\text{syst}) \pm 410(\text{lumi}) \text{ pb}
\]
Inclusive Z Cross Section

- Z signal extraction is estimated using counting method in 60<M(Z)<120 GeV
- Almost background free
- Both total and fiducial cross sections

\[\sigma(pp \to ZX) \times \mathcal{B}(Z \to \ell^+\ell^-) = 1910 \pm 10\text{(stat)} \pm 40\text{(syst)} \pm 90\text{(lumi)} \text{ pb} \]

- Updated result \(Z \to \mu\mu \) with full dataset and new luminosity:
 \[\sigma(pp \to ZX) \times \mathcal{B}(Z \to \mu^+\mu^-) = 1870 \pm 2\text{(stat)} \pm 35\text{(syst)} \pm 51\text{(lumi)} \text{ pb} \]

FEWZ (NNLO, NNPDF3.0) = 1870 \pm 50 \text{ pb}

Norbert Neumeister - Purdue University

ICNFP2017
Inclusive W/Z Cross Section

- Measured cross sections agree with next-to-next-to-leading order QCD and next-to-leading order EW calculations.

- Predictions of cross sections calculated for 5 PDF sets:
 - PDFs show differences depending on which data are used in the fit

- Systematic uncertainties:
 - Dominant uncertainty: luminosity (significantly reduced with full statistics)

<table>
<thead>
<tr>
<th>Source</th>
<th>W^+</th>
<th>W^-</th>
<th>W^+</th>
<th>W^-</th>
<th>W^+</th>
<th>W^-</th>
<th>Z</th>
<th>Z</th>
<th>W/Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton charge, reco. & id. [%]</td>
<td>1.9</td>
<td>1.7</td>
<td>1.8</td>
<td>0.3</td>
<td>2.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Bkg. subtraction / modeling [%]</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>E^miss scale and resolution</td>
<td>shape</td>
<td>shape</td>
<td>NA</td>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon scale and resolution</td>
<td>NA</td>
<td></td>
<td>shape</td>
<td>shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total experimental [%]</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>0.5</td>
<td>2.3</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Theoretical Uncertainty [%]</td>
<td>2.0</td>
<td>1.7</td>
<td>1.3</td>
<td>1.3</td>
<td>1.5</td>
<td>2.0</td>
<td>1.9</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Lumi [%]</td>
<td>4.8</td>
<td>4.8</td>
<td>4.6</td>
<td>NA</td>
<td>4.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Total [%]</td>
<td>5.6</td>
<td>5.4</td>
<td>5.3</td>
<td>2.3</td>
<td>5.5</td>
<td>2.3</td>
<td>2.2</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

Norbert Neumeister - Purdue University
ICNFP2017
Inclusive W & Z Production

- The experimental precision is already comparable with theoretical uncertainties
 - With current statistics can challenge state-of-the-art theoretical predictions: <1% scale variation at NNLO
- Measure the W/Z, W⁺/W⁻ ratios test pQCD
- Good overall agreement with theory predictions at NNLO

Norbert Neumeister - Purdue University
Lepton Universality

- Ratio of electron- and muon channel W^\pm and Z boson production fiducial cross sections
- R_Z fully dominated by LEP result 0.9991 ± 0.0024
Differential Z Cross Section

- Differential $Z \rightarrow \mu\mu$ cross sections measured at $\sqrt{s} = 13$ TeV, $\int L = 2.3$ fb$^{-1}$ (full 2015 dataset)
- Differential cross sections as function of: $p_T(Z)$, $y(Z)$, $p_T(\text{lepton})$, ϕ^*
 - Low p_T: governed by initial-state radiation and intrinsic p_T of initial-state parton inside proton
 - Modeled using soft gluon resummation or parton shower models
 - High p_T: dominated by quark-gluon scattering, described by perturbative QCD
- Comparison with aMC@NLO, POWHEG (NLO) and FEWZ (NNLO)
 - FEWZ gives good agreement for $p_T > 25$ GeV
 - POWHEG and aMC@NLO show small deviations
 - Soft gluon resummation is needed to overcome divergences
- Define \(\phi_\eta^* = \tan\left(\frac{\pi - \Delta \phi}{2}\right) \cdot \sin(\theta_\eta^*) \) where \(\cos(\theta_\eta^*) = \tanh\left(\frac{\eta^- - \eta^+}{2}\right) \)

- Probes Z boson \(P_T \), but depends on direction of muon → smaller exp. uncertainty

- POWHEG shows good agreement in very low \(\phi^* \) region
\(\text{d}\sigma/\text{d}p_T^\mu \)

- \(p_T \) distribution of Z boson
 - Muons with \(p_T > 25 \text{ GeV} \) and \(|\eta| < 2.4 \)
 - Relative isolation in a cone of radius \(\Delta R = 0.4 \) with an isolation selection requirement of less than 15%
 - \(60 \text{ GeV} < M_Z < 120 \text{ GeV} \)

- No generator is able to describe the data in all of the studied phase-space

![Data, aMC@NLO, POWHEG, FEWZ comparison](image)

CMS-PAS-SMP-15-011
Drell-Yan $d\sigma/dm$

- Differential Drell-Yan cross section measured at $\sqrt{s} = 13$ TeV with $\int L = 2.8$ fb$^{-1}$ of data
- Only $\mu\mu$ final states; Muons with $p_T > 22$ (10) GeV and $|\eta| < 2.4$
- $d\sigma/dm$ in range $15 < M < 3000$ GeV (43 bins)
- Apply all corrections to get FSR-corrected results in full acceptance
- Data-driven background estimation for $t\bar{t}$, tW, $\tau\tau$, W+jets, QCD $d\bar{d}$

![Graphs showing Drell-Yan cross section data and theoretical predictions](image-url)
• Measured differential cross section compared with aMC@NLO and FEWZ predictions
 – FEWZ prediction is NNLO theoretical values calculated with NNPDF3.0 PDF
 – Generally good agreement with the prediction within uncertainties

![Drell-Yan dσ/dm](image)

Norbert Neumeister - Purdue University
Electroweak Mixing Angle

- Forward-backward asymmetry near Z peak is sensitive to leptonic $\sin^2\theta_{\text{eff}}$
- Use combined ee and $\mu\mu$ data samples
- Fit A_{FB} distribution in 12 bins of m and 6 bins in $|y|$ with different $\sin^2\theta_{\text{eff}}$ templates

$$\sin^2\theta_{\text{lept}}^{\text{eff}} = 0.23101 \pm 0.00036(\text{stat}) \pm 0.00018(\text{syst}) \pm 0.00016(\text{theory}) \pm 0.00030(\text{pdf})$$

$$\sin^2\theta_{\text{lept}}^{\text{eff}} = 0.23101 \pm 0.00052.$$
W/Z + Jets

• W/Z + jet production is sensitive to gluon content of the proton:
 \[u + g \to W^+ + q \text{ jet} \]
 \[d + g \to W^- + q \text{ jet} \]

• When associated to specific jet flavors, there is sensitivity to other PDFs too:
 \[s + g \to W^- + c \]
 \[b + g \to Z^0 + b \]

• Accurate modeling of V+jets is importance for many measurements at the LHC
 – W/Z+jets is dominant background for precision top quark measurements
 – Important for precision Higgs physics (background modeling)
 – Important for modeling of SM background in searches of new physics

• With W/Z+jets we can probe different aspects of QCD calculations
• Test QCD fixed-order calculations and MCs, sensitive to higher order effects but also soft QCD effects (particle emission, PS).
 - Compared to predictions: LO(≤4j) and NLO(≤2j) MadGraph5_aMC@NLO; NNLO for one inclusive jet
 - Measured: Excl./Incl. jet multiplicities, jet p_T, jet η, and H_T up to ≥ 3 jets
 - Good agreement with predictions, but overall LO MadGraph5_aMC@NLO slightly underestimates data on the observables
Similarly to W+jets, the measurements are sensitive to higher order corrections and radiative effects.

Compared to predictions: MadGraph5_aMC@NLO with NLO for 0, 1 and 2 jets

- Good agreement although the third jet p_T is decreasing more rapidly in simulation than data.
W/Z + b Jets

- Sensitive to gluon splitting, can probe b-quark PDF, important background to Higgs and BSM searches.

- W+b\(\bar{b}\)
 - Cross section obtained by fitting \(M_T\)
 - Compared to LO (4FS/5FS) and NLO
 - In agreement with predictions

- Z+(b)b
 - Fiducial \(Z+\geq 1b, \geq 2b\) cross sections and ratio
 - Differential in jet \(p_T\) and \(Z\) \(p_T\)
 - Compared to LO (4FS/5FS) and NLO
 - 20% discrepancy for 4FS LO
 - 5FS LO overestimates data at low b-jet \(p_T\)

![Graph showing cross section data and predictions](image-url)
• Test of QCD predictions, sensitive to charm content in the proton. Test modeling of Z+HF in searches (e.g. FCNC top decays).

• Signal isolated with:
 – Selection with a muon from decay of a HF quark, participating in a displaced vertex
 – Selection of exclusive final states from D meson resonant peaks (either D^\pm or $D^{*\pm}$)
EW Z + 2 Jets

- Signal is defined as $lljj$ final state with $p_T(j) > 25$ GeV, $m(jj) > 120$ GeV, $m(ll) > 50$ GeV

$$\sigma_{LO}(\text{EW } lljj) = 0.50 \pm 0.02 \text{ (QCDscale)} \pm 0.02 \text{ (PDF)}$$

- Pure EW:
 - non-VBF diagrams that lead to identical final states and cannot be neglected
 - these diagrams have important negative interferences with the VBF productions

![Signal Diagram](image)

![Background Diagram](image)
Multivariate analysis techniques are used to optimize S/B
Binned maximum likelihood fit with strength modifiers for all MC components
10% precision:

$\sigma(\text{EW } \ell\ell jj) = 552 \pm 19(\text{stat}) \pm 55(\text{syst}) = 552 \pm 58(\text{total}) \text{ fb}$
Electroweak W Production

- **Vector boson fusion (VBF) characteristic signature**
 - 2 jets at high $|\eta|$
 - high dijet invariant mass m_{jj}
 - large rapidity separation $\Delta \eta$
 - little hadronic activity in the central part of the detector
 - multivariate analysis to increase background discrimination

- **Fiducial cross section from fits to m_{jj} distributions, using parametric models for all processes**
 \[\sigma_{\text{fid}} = 0.42 \pm 0.04 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.01 \text{ (lumi)} \text{ pb} \]

- **Consistent with LO prediction**
 \[\sigma_{\text{LO}} = 0.50 \pm 0.02 \text{ (scale)} \pm 0.02 \text{ (PDF)} \text{ pb} \]
Di-Boson Production

- Important test of EWSB
- Large amount of measurement variety of final states
- Sensitive to BSM contributions
- Good agreement with the SM

March 2017

CMS Preliminary

<table>
<thead>
<tr>
<th>System</th>
<th>Production Cross Section Ratio: $\sigma_{exp} / \sigma_{theo}$</th>
<th>7 TeV CMS measurement (stat,stat+sys)</th>
<th>8 TeV CMS measurement (stat,stat+sys)</th>
<th>13 TeV CMS measurement (stat,stat+sys)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma$</td>
<td>$1.06 \pm 0.01 \pm 0.12$</td>
<td>5.0 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W\gamma$, (NLO th.)</td>
<td>$1.16 \pm 0.03 \pm 0.13$</td>
<td>5.0 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z\gamma$, (NLO th.)</td>
<td>$0.98 \pm 0.01 \pm 0.05$</td>
<td>5.0 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z\gamma$, (NLO th.)</td>
<td>$0.98 \pm 0.01 \pm 0.05$</td>
<td>19.5 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$WW+WZ$</td>
<td>$1.01 \pm 0.13 \pm 0.14$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>$1.07 \pm 0.04 \pm 0.09$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>$1.00 \pm 0.02 \pm 0.08$</td>
<td>19.4 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>$0.96 \pm 0.05 \pm 0.08$</td>
<td>2.3 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>$1.05 \pm 0.07 \pm 0.06$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ</td>
<td>$1.02 \pm 0.04 \pm 0.07$</td>
<td>19.6 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ</td>
<td>$0.80 \pm 0.06 \pm 0.07$</td>
<td>2.3 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$0.97 \pm 0.13 \pm 0.07$</td>
<td>4.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$0.97 \pm 0.06 \pm 0.08$</td>
<td>19.6 fb^{-1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>$1.10 \pm 0.04 \pm 0.05$</td>
<td>35.9 fb^{-1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All results at: http://cern.ch/go/pNj7
• First diboson measurement with 13 TeV data
• Main channel: \(ZZ \rightarrow 4\ell \), clean signature and background to \(H \rightarrow 4\ell \)
• Differential cross sections (with and w/o jets) to test higher order effects (NNLO QCD and NLO QED)
• Cross section agrees well with NNLO prediction
• Measure differential cross section as function of p_T^{ZZ}
• Possible indication for a softer p_T^{ZZ} than what is predicted by both POWHEG+MCFM and MG+MCFM
ZZ + 2 Jets

- Vector boson scattering and constraints on anomalous quartic gauge couplings from events with two Z bosons and two jets
- The electroweak production of two Z bosons in association with two jets is measured with an observed (expected) significance of 2.7 (1.6) standard deviations

![Graphs showing data and theoretical predictions for ZZ + 2 Jets](image-url)
WW + 2 Jets

- EWVV+2 jets production (VBS) probes EWSB
- Characterized by 2 forward jets separated in rapidity, with low hadronic activity in between
- $W^\pm W^\pm$ same sign lepton selection, two jets with large y separation and m_{jj} leads to first observation of EWVV at 13 TeV (5.5σ)

![Plots showing event distributions for m_{jj} and m_{ll} with CMS Preliminary data and theoretical predictions.](image-url)
Anomalous Vector Boson Couplings

- New physics at higher scales can lead to modified couplings → probe for increase in cross section
 - aTGC constrained with inclusive diboson (WWZ vertex)
 - aQGC constrained with EW VVjj and triboson

Norbert Neumeister - Purdue University
ICNFP2017
Anomalous Vector Boson Couplings

- Sensitivity depends on the channel
 - Boosted topology with hadronic final states usually has best sensitivity
 - Large gain in sensitivity with \(\sqrt{s} \)
- Limits on aQGC

Dimension-8 transverse parameters \(f_{\lambda,i} \)

Dimension-8 mixed transverse and longitudinal parameters \(f_{\lambda,i} \)

Norbert Neumeister - Purdue University
Summary

- Known QCD and EW processes continue to be studied in greater detail
 - Results benefit from (and drive) the advancements in theoretical calculations and MC generators
 - Differential measurements with uncertainties below 1%

- Enough statistics to see EW production of diboson processes: path toward $W_L W_L$ scattering
 - Development of data analysis tools (boosted techniques, using jet substructure for hadronic W and Z decays etc.)

- Expect a significant increase in sensitivity to anomalous gauge boson self-interaction couplings
 - Await for a suite of new results

- No significant deviations from the SM observed to date
 - Increasingly more precise and complex SM measurements will continue to play a complementary role to direct searches in probing for new physics