The ATLAS Run-2 Trigger Menu for higher luminosities: Design, Performance and Operational Aspects

Arantxa Ruiz Martínez (Carleton University)
on behalf of the ATLAS Collaboration
6th International Conference on New Frontiers in Physics
Kolymbari, Crete (Greece), 17-29 August 2017

- $^{\rm O}~$ LHC proton-proton collisions at \sqrt{s} = 13 TeV in Run-2 (2015-2018)
- $^{\rm O}$ $\,$ Record peak luminosity: $1.74 \times 10^{34} \ cm^{-2} s^{-1}$
 - \Rightarrow Design LHC luminosity: $10^{34}~\text{cm}^{-2}\text{s}^{-1}$
 - \Rightarrow Peak lumi reached in 2016: 1.38 $\times\,10^{34}~cm^{-2}s^{-1}$
 - \Rightarrow Trigger menu designed in 2017 for $2 \times 10^{34} \mbox{ cm}^{-2} \mbox{s}^{-1}$
- $^{\rm O}~$ A total of 17.9 $\rm fb^{-1}$ delivered so far (LHC goal for 2017 is 45 $\rm fb^{-1})$
- $^{\rm O}$ $\,$ Increased number of interactions per bunch crossing (pileup): $\langle \mu \rangle = 32.2$ in 2017
- ^O Extremely challenging environment!

ATLAS Run-2 Trigger and Data Acquisition

ATLAS Run-2 Trigger and Data Acquisition

In Run-2, ATLAS uses a two level trigger system to efficiently select interesting events and reduce the interaction rate of 40 MHz to 1 kHz:

- Hardware-based Level-1 (L1) trigger:
 - Level-1 Calo: new Multi-Chip Module (nMCM) allows more flexible signal processing, more thresholds
 - Level-1 Muon: coincidences with inner detector, additional chambers in the feet of the barrel region and from Tile extended barrel region
 - Central Trigger: support multi-partition running
- Software-based High Level Trigger (HLT):
 - Single farm (merged Level-2 and Event Filter farms used in Run-1) for better resource sharing
 - Fast offline-like sophisticated algorithms running mostly in L1 Regions-of-Interest
 - Full upgrade of readout and data storage systems
 - Events accepted at HLT are stored for offline event reconstruction at Tier-0 to be used in physics analyses

New systems installed in Run-2:

- Level-1 Topological Trigger (L1Topo): topological cuts to reduce the rate and keep the thresholds low
- Fast TracKer (FTK): hardware-based tracking which provides full track information to HLT after every Level-1 accept, currently under commissioning

Level-1 Topological Trigger

 Level-1 Topological Trigger module combines calorimeter and muon information at Level-1 and applies topological selections to reduce the rate (e.g., angular distances, di-object invariant mass, transverse mass)

- ^o FPGA-based algorithms used to analyse geometrical information on trigger objects
- L1Topo activated and commissioned in 2016 and used in several primary triggers in 2017

B-physics topological trigger

- Trigger menu:
 - L1 menu consists of 512 single items and combinations
 - HLT menu consists of O(1000) chains
 - Rates are adjusted vias prescale sets, where each prescale set corresponds to a fixed value of instantaneous luminosity
- Chains are grouped into signatures: electrons, photons, muons, taus, jets, etc.
- Chains require either full event building (EB) or partial EB with only subdetector information for recording into data streams
- Different streams defined such as:
 - Main Physics: including majority of the events
 - Express: stream for fast offline monitoring and detector calibration
 - Trigger Level Analysis: using partial EB for di-jet resonance searches
- Trigger menu strategy based on:
 - Primary triggers: used for physics analyses, typically running unprescaled
 - Support triggers: used for efficiency and performance measurements or monitoring
 - Alternative triggers: running alternative online reconstruction algorithms
 - Backup triggers: tighter selections and lower expected rate
 - Calibration triggers: used for detector calibrations

- Express (full EB)
- Other Physics (full EB)
- Trigger Level Analysis (partial EB)
- Detector Calibration (partial EB)
- Detector Monitoring (partial EB)

Trigger Level Analysis (TLA)

- Novel idea to circumvent the bandwidth limitation using partial event building (< 5% standard event size recorded)
- Prescale factors normally applied to the HLT jet triggers in the standard stream
- $^{\rm O}~$ Large gain in statistics for the data scouting stream for $p_{\rm T} < 400~{\rm GeV}$
- $^{\circ}$ Important for low mass dijet searches \rightarrow Increase sensitivity

A. Ruiz (Carleton)

ATLAS-CONF-2016-030

ATLAS Level-1 Trigger rates

- ^o Representative Level-1 triggers running unprescaled in a fill taken in June 2017:
 - EM: electromagnetic clusters
 - MU: muon candidates
 - J: jet candidates
 - XE: missing energy
 - TAU: tau candidates

EM22VH

- 22: Nominal trigger threshold in GeV
- V: η -dependent trigger thresholds applied
- H: Hadronic core isolation applied for $E_{\rm T} < 50 \, {\rm GeV}$
- I: Electromagnetic isolation applied for $E_{\rm T} < 50 \, {\rm GeV}$
- Exponential decay with decreasing luminosity during an LHC fill
- The rates periodically increase due to LHC luminosity re-optimisations, dips are due to deadtime and spikes are caused by detector noise

Multi Level-1 trigger items

Time [h:m]

ATLAS HLT Trigger rates

- Physics trigger group rates at the HLT as a function of time in a fill taken in June 2017
- Overlaps are only accounted for in the total Main Physics Stream rate
- Exponential decay with decreasing luminosity during an LHC fill
- The rates periodically increase due to LHC luminosity re-optimisations, dips are due to deadtime and spikes are caused by detector noise

ATLAS Trigger CPU usage

- HLT is computer farm of up to approximately 40,000 CPU cores
- Higher CPU-usage partially scaling exponentially with pileup
- Improved CPU usage of the trigger chains in 2017
- Summary of the CPU consumption for all chains as assigned to physics groups

A. Ruiz (Carleton)

ATL-DAQ-PUB-2016-002

Physics use cases:

- **B Jet:** $H \rightarrow b\bar{b}$, $t\bar{t}$, etc.
- Electron: Generic analyses
 (W, Z, dibosons, tt, etc.)
- **Photon:** $H \rightarrow \gamma \gamma$, γ production, etc.
- **B Physics:** J/ψ , Υ , etc.
- Muon: Generic analyses
 (W, Z, dibosons, tt, etc.)
- **Tau:** $H \rightarrow \tau \tau$, searches, etc.
- Jet: jet production, dijet resonances searches, etc.
- Missing Energy: SUSY searches, etc.

ATLAS Trigger software validation

ATL-DAQ-PROC-2016-040

ATLAS

Level-1 EM isolation optimization for 2017

- The unprescaled single Level-1 EM trigger is the item with the highest rate in the Level-1 menu
- Level-1 EM isolation tightened to reduce the trigger rate and keep the single-electron trigger threshold low
- $^{\rm O}$ Default Level-1 EM isolation used in 2016: max{2 GeV, ${\cal E}_{T,\,cluster}/8-1.8~GeV}$ for ${\cal E}_{T,\,cluster}<50\,GeV$
- $^{\rm O}$ New Level-1 EM medium isolation implemented in 2017: max{1 GeV, $\mathit{E}_{\rm T, cluster}/8-2.0$ GeV} for $\mathit{E}_{\rm T, cluster}<50$ GeV

Medium isolation (IM) with respect to the default isolation (I)

Level-1 $E_{\rm T}$	Efficiency loss	Rate reduction
22 GeV	1.3%	14.6%
24 GeV	1.0%	10.8%

Frigger Efficiency

1.2

0.8

0.6

0.4

0.2

-2 -1.5

ICNFP 2017, 3

1.4

First 2017 performance

Electron trigger efficiencies

- Likelihood-based electron identification applied at HLT, different working points defined: tight, medium, loose, very loose
- Lowest unprescaled single-electron trigger HLT_e28_lhtight_nod0_ivarloose (trigger seeded by L1_EM24VHI)
- $^{\rm O}~$ HLT track-based isolation applied (ivarloose: $\sum \rho_T^{trk}/\rho_T < 0.1$ in $\Delta R < 0.2$)
- ^O Efficiency with respect to offline isolated tight electrons using $Z \rightarrow ee$ Tag & Probe

E_T > 29 GeV

1.5 2

Offline isolated electron n

HLT e28 Ihtight nod0 ivarloose

No background subtraction applied

Data 2017, vs=13 TeV, 1.8 fb⁻¹

Data

-1 -0.5 0 0.5

A Z→ ee MC

ATLAS Preliminary

<µ>

Frigger Efficiency

1.2

0.8F

0.6

0.4

0.2

ا0

First 2017 performance

Electron trigger efficiencies

- Likelihood-based electron identification 0 applied at HLT, different working points defined: tight, medium, loose, very loose
- Leg of the unprescaled di-electron trigger HLT_2e24_lhvloose_nod0 (trigger seeded by L1_2EM20VH)
- 0 Efficiency with respect to offline loose electrons using $Z \rightarrow ee$ Tag & Probe
- 0 No background subtraction applied

1.4

1.2

0.8

ATLAS Preliminary

Data 2017, vs=13 TeV, 1.8 fb-1

Frigger Efficiency

Frigger Efficiency

1.04

1.02F

0.98

0.96

0.94

0.92

0.9

0 Data

H→γγ MC

-2

First 2017 performance

Photon trigger efficiencies

- Cut-based photon identification applied at 0 HLT, different working points defined: tight, medium, loose
- Leg of the unprescaled di-photon trigger 0 HLT_g35_medium_g25_medium_L12EM20VH (trigger seeded by L1_2EM20VH) \rightarrow Main triager used for $H \rightarrow \gamma \gamma$
- 0 Efficiency with respect to offline isolated tight photons using the bootstrap method
- 0 No background subtraction applied

HLT_g25_medium_L1EM20VH

ATLAS Preliminary

Data 2017. vs = 13TeV

E_T > 30 GeV

<u>

Trigger Efficiency

F₇ > 30 GeV

Offline isolated photon n

1.04

0.98

0.96

0.94

0.92

0.9

ATLAS Preliminary

Barrel muon trigger efficiencies

- 0 Muons reconstructed combining Inner Detector + Muon Spectrometer information (reduced barrel geometrical acceptance)
- Lowest unprescaled single-muon triggers 0 HLT_mu26_ivarmedium || HLT_mu60 (triggers seeded by L1_MU20)
- 0 HLT track-based isolation applied
- Efficiency with respect to offline isolated 0
- 0 No background subtraction applied

Efficiency

0.5

ATLAS Preliminary

Z → uu

 $|\eta^{\mu}| < 1.05$

A. Ruiz (Carleton)

Efficiency

ICNFP 2017, 23 August 2017

s=13 TeV, Data 2017, 1.2 fb⁻¹

Endcap muon trigger efficiencies

- Muons reconstructed combining Inner Detector + Muon Spectrometer information
- Lowest unprescaled single-muon triggers HLT_mu26_ivarmedium || HLT_mu60 (triggers seeded by L1_MU20)
- $^{\rm O}~$ HLT track-based isolation applied (ivarmedium: $\sum p_{\rm T}^{\rm trk}/p_{\rm T} < 0.07$ in $\Delta R < 0.3)$
- $^{\rm O}~$ Efficiency with respect to offline isolated medium muons using $Z \to \mu \mu$ Tag & Probe
- No background subtraction applied

Jet trigger efficiencies

- Jets reconstructed using the anti-k_t R = 0.4 algorithm and calibrated at HLT
- Comparison of different calibrations:
 - Updated calibration using only calorimeter information
 - Updated calibration including additional track information
- The Global Sequential Calibration (GSC) corrects jets according to their longitudinal shower shape and associated track characteristics without changing the overall energy scale
- Efficiencies computed using the bootstrap method

Unprescaled single-jet trigger

Unprescaled multi-jet trigger

Per-event trigger efficiency

0.8

0.6

0.4

0.2

First 2017 performance

Large-*R* jet trigger efficiencies

- Trimming (JHEP 02 (2010) 084) applied to mitigate contamination from soft radiation (initial state radiation, multiple parton interactions, pileup)
- Jet trimming procedure:
 - anti-k, R = 1.0 algorithm used for large-R jets
 - Within a jet, recluster the constituents into subjets with radius $R_{sub} = 0.2$
 - Discard subjets if $p_{T,i} < f_{cut} \cdot \Lambda_{hard}$ ($f_{cut} = 0.05$ used)
 - Remaining subjets assembled into the trimmed jet

Offline selection

anti-k, R = 1.0

HLT: 1 jet p_ > 420 GeV

≥1 jet with mass > 50 GeV, |η| < 2

HLT: 1 jet p, > 390 GeV, mass > 30 GeV

trimming: $f_{cut} = 0.05$, $R_{cub} = 0.2$

Data 2017, s = 13 TeV

Mass cut also applied

350

ATLAS Preliminary

400

Second leading large-R trimmed offline iet mass [GeV]

b-jet trigger efficiencies

- The *b*-jet trigger uses a Boosted Decision Tree (BDT) algorithm to separate *b*-jets from light and *c*-jet backgrounds
- BDT re-optimized to improve the *b*-tagging performance
- The performance of the *b*-tagging algorithms measured using $t\bar{t}$ Monte Carlo
- o b-tagging algorithms used for b-jet triggers:
 - 2017 data: MV2c10 (multivariate algorithm with a 10% c-jet fraction in the training)
 - 2016 data: MV2c20 (multivariate algorithm with a 20% c-jet fraction in the training)
 - 2015 data: IP3D+SV1 (impact parameter tagger, secondary vertex finding algorithm)

Missing E_T trigger efficiencies

- Pileup mitigation is the main challenge → significant effort to mitigate the impact on the trigger rates and deliver more efficient pileup suppression algorithms
- Efficiency of the lowest unprescaled E_T^{miss} triggers using events with reconstructed $E_T^{miss} > 150 \text{ GeV}$ and a $W \rightarrow \mu \nu$ selection
- pufit: baseline algorithm in 2017, E^{miss} calculated as the negative of the p_T sum of all calorimeter topological clusters corrected for pileup
- **mht**: default algorithm in 2016, E_T^{miss} calculated as the negative of the p_T sum of all jets reconstructed by the anti- k_t jet algorithm

Prospects

- The upgrades of the detectors and trigger system will be essential in the coming years to take full advantage of the physics potential of the LHC
- LHC Run-3 (2021-2023) begins after the Phase-1 detector upgrades
- HL-LHC (High Luminosity LHC) starting in 2024 with the Phase-2 detector upgrades followed by Run-4
- $\circ~$ The goal of the Phase-2 upgrades in ATLAS is to cope with an instantaneous luminosity of up to $7.5\times10^{34}\,cm^{-2}s^{-1}$ and a pileup of 200 collisions per crossing

- Significant improvements in many areas, several hardware and software improvements during the LHC shutdown (2013-2014) to cope with the challenges to face in the LHC Run-2 (2015-2018)
- $\circ~$ Surpassed the initial design, trigger menu prepared for twice the design luminosity (2 \times 10³⁴ cm⁻²s⁻¹) and high pileup conditions ($\mu \sim$ 60) expected in 2017 data taking
- Rock-solid well-established validation procedures to ensure a smooth trigger operation
- **First performance studies using 2017 data** of different trigger signatures (electrons, photons, muons, jets and E_T^{miss}) have been presented
- More results in:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerPublicResults