The ATLAS Run-2 Trigger Menu for higher luminosities: Design, Performance and Operational Aspects

Arantxa Ruiz Martínez (Carleton University) on behalf of the ATLAS Collaboration **6th International Conference on New Frontiers in Physics Kolymbari, Crete (Greece), 17-29 August 2017**

- LHC proton-proton collisions at $\sqrt{s} = 13$ TeV in Run-2 (2015-2018)
- Record peak luminosity: 1.74×10^{34} cm⁻²s⁻¹
	- \Rightarrow Design LHC luminosity: 10 34 cm $^{-2}$ s $^{-1}$
	- \Rightarrow Peak lumi reached in 2016: 1.38 $\times10^{34}$ cm $^{-2}$ s $^{-1}$
	- \Rightarrow Trigger menu designed in 2017 for 2 $\times10^{34}$ cm $^{-2}$ s $^{-1}$
- A total of 17.9 fb−¹ delivered so far (LHC goal for 2017 is 45 fb $^{-1}$)
- Increased number of interactions per bunch crossing (pileup): $\langle \mu \rangle$ = 32.2 in 2017
- **Extremely challenging environment!**

ATLAS Run-2 Trigger and Data Acquisition

ATLAS Run-2 Trigger and Data Acquisition

In Run-2, ATLAS uses a two level trigger system to efficiently select interesting events and reduce the interaction rate of 40 MHz to 1 kHz:

- Hardware-based **Level-1 (L1)** trigger:
	- **Level-1 Calo**: new Multi-Chip Module (nMCM) allows more flexible signal processing, more thresholds
	- **Level-1 Muon**: coincidences with inner detector, additional chambers in the feet of the barrel region and from Tile extended barrel region
	- **Central Trigger**: support multi-partition running
- Software-based **High Level Trigger (HLT)**:
	- Single farm (merged Level-2 and Event Filter farms used in Run-1) for better resource sharing
	- Fast offline-like sophisticated algorithms running mostly in L1 Regions-of-Interest
	- Full upgrade of readout and data storage systems
	- Events accepted at HLT are stored for offline event reconstruction at Tier-0 to be used in physics analyses

New systems installed in Run-2:

- **Level-1 Topological Trigger (L1Topo)**: topological cuts to reduce the rate and keep the thresholds low
- **Fast TracKer (FTK)**: hardware-based tracking which provides full track information to HLT after every Level-1 accept, currently under commissioning

Level-1 Topological Trigger

O Level-1 Topological Trigger module combines calorimeter and muon information at Level-1 and applies topological selections to reduce the rate (e.g., angular distances, di-object invariant mass, transverse mass) $\frac{1}{\sqrt{2}}$
avid
va

 $\overline{}$ ware constraints. Section 3 gives summary of algorithms. The proposed L1Toposed L1Toposed

- FPGA-based algorithms used to analyse geometrical information on trigger objects
- L1Topo activated and commissioned in 2016 and used in several primary triggers in 2017

B-physics topological trigger

- Trigger menu:
	- **L1 menu** consists of **512 single items and combinations**
	- **HLT menu** consists of **O(1000) chains**
	- Rates are adjusted vias prescale sets, where each prescale set corresponds to a fixed value of instantaneous luminosity
- Chains are grouped into signatures: electrons, photons, muons, taus, jets, etc.
- Chains require either full event building (EB) or partial EB with only subdetector information for recording into data streams
- Different streams defined such as:
	- Main Physics: including majority of the events
	- Express: stream for fast offline monitoring and detector calibration
	- Trigger Level Analysis: using partial EB for di-jet resonance searches
- Trigger menu strategy based on:
	- Primary triggers: used for physics analyses, typically running unprescaled
	- Support triggers: used for efficiency and performance measurements or monitoring
	- Alternative triggers: running alternative online reconstruction algorithms
	- Backup triggers: tighter selections and lower expected rate
	- Calibration triggers: used for detector calibrations

Trigger Level Analysis (TLA)

- **Novel idea to circumvent the bandwidth limitation using partial event building** (< 5% standard event size recorded)
- Prescale factors normally applied to the HLT jet triggers in the standard stream
- Large gain in statistics for the data scouting stream for $p_T < 400$ GeV
- \circ Important for low mass dijet searches \rightarrow **Increase sensitivity**

[ATLAS-CONF-2016-030](http://cds.cern.ch/record/2161135)

ATLAS Level-1 Trigger rates

- Representative Level-1 triggers running unprescaled in a fill taken in June 2017:
	- **EM**: electromagnetic clusters
	- **MU**: muon candidates
	- **^J**: jet candidates
	- **XE**: missing energy
	- **TAU**: tau candidates

EM22VHI

- **22: Nominal trigger threshold in GeV**
- **V**: η-dependent trigger thresholds applied
- **H**: Hadronic core isolation applied for $E_T < 50$ GeV
- **I**: Electromagnetic isolation applied for $E_T < 50$ GeV
- Exponential decay with decreasing luminosity during an LHC fill
- \degree The rates periodically increase due to LHC luminosity re-optimisations, dips are due to deadtime and spikes are caused by detector noise

ATLAS HLT Trigger rates

- \degree Physics trigger group rates at the HLT as a function of time in a fill taken in June 2017
- Overlaps are only accounted for in the total Main Physics Stream rate
- Exponential decay with decreasing luminosity during an LHC fill
- \circ The rates periodically increase due to LHC luminosity re-optimisations, dips are due to deadtime and spikes are caused by detector noise

ATLAS Trigger CPU usage

- HLT is computer farm of up to approximately 40,000 CPU cores
- Higher CPU-usage **partially scaling exponentially with pileup**
- Improved CPU usage of the trigger chains in 2017
- Summary of the CPU consumption for all chains as assigned to physics groups

[ATL-DAQ-PUB-2016-002](https://cds.cern.ch/record/2223498/)

Physics use cases:

- **B Jet:** $H \rightarrow b\bar{b}$, $t\bar{t}$, etc.
- **Electron:** Generic analyses $(W, Z,$ dibosons, $t\bar{t}$, etc.)
- **Photon:** ^H [→] γγ, ^γ production, etc.
- **B Physics:** ^J/ψ, ^Υ, etc.
- **Muon:** Generic analyses $(W, Z,$ dibosons, $t\bar{t}$, etc.)
- \circ **Tau:** $H \rightarrow \tau \tau$, searches, etc.
- **Jet:** jet production, dijet resonances searches, etc.
- **Missing Energy:** SUSY searches, etc.

ATLAS Trigger software validation their feedback. If sign-o↵ is given by every signature group then the software release can be

[ATL-DAQ-PROC-2016-040](https://cds.cern.ch/record/2239296)

Level-1 EM isolation optimization for 2017

- The unprescaled single Level-1 EM trigger is the item with the highest rate in the Level-1 menu
- Level-1 EM isolation tightened to reduce the trigger rate and keep the single-electron trigger threshold low
- Default Level-1 EM isolation used in 2016: max{2 GeV, $E_{T, cluster}/8 - 1.8$ GeV} for $E_{T, cluster} < 50$ GeV
- New Level-1 EM medium isolation implemented in 2017: max{1 GeV, $E_{\text{T, cluster}}/8 - 2.0$ GeV} for $E_{\text{T, cluster}} < 50$ GeV

Medium isolation (IM) with respect to the default isolation (I)

ىسا () 0.2 0.4 0.6 0.8 11= 1.2 1.4

Trigger Efficiency

First 2017 performance

Electron trigger efficiencies

- Likelihood-based electron identification applied at HLT, different working points defined: tight, medium, loose, very loose
- Lowest unprescaled single-electron trigger HLT_e28_lhtight_nod0_ivarloose (trigger seeded by L1 EM24VHI)
- HLT track-based isolation applied (ivarloose: $\sum p_T^{\text{trk}}/p_T < 0.1$ in $\Delta R < 0.2$)
- Efficiency with respect to offline isolated tight electrons using $Z \rightarrow ee$ Tag & Probe

Offline isolated electron η

 E_T > 29 GeV

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

HLT_e28_lhtight_nod0_ivarloose

◦ No background subtraction applied

ATLAS Preliminary Data 2017, \sqrt{s} =13 TeV, 1.8 fb⁻¹

> Data Z→ ee MC

25 30 35 40 45 50

 \leq

سىر 0.2 0.4 0.6 0.8 1-L. 1.2 1.4

Trigger Efficiency

First 2017 performance

Electron trigger efficiencies

- Likelihood-based electron identification applied at HLT, different working points defined: tight, medium, loose, very loose
- Leg of the unprescaled di-electron trigger HLT_2e24_lhyloose_nod0 (trigger seeded by L1 2EM20VH)
- Efficiency with respect to offline loose electrons using $Z \rightarrow ee$ Tag & Probe
- No background subtraction applied

Trigger Efficiency

0.8 † 1.2 1.4

ATLAS Preliminary Data 2017, \sqrt{s} =13 TeV, 1.8 fb⁻¹

0.9 0.92 $0.94F$ 0.96 0.98 11-

Trigger Efficiency
1.02
2.02

First 2017 performance

Photon trigger efficiencies

- Cut-based photon identification applied at HLT, different working points defined: tight, medium, loose
- Leg of the unprescaled di-photon trigger HLT g35 medium g25 medium L12EM20VH (trigger seeded by L1_2EM20VH) \rightarrow Main trigger used for $H \rightarrow \gamma\gamma$
- Efficiency with respect to offline isolated tight photons using the bootstrap method

−2 −1 0 1 2

 $F_T > 30$ GeV

◦ No background subtraction applied

HLT_025_medium_L1EM20VH

1.02├─ Data 2017, *I*s = 13TeV 1.04 **ATLAS** Preliminary

> Data H→ γγ MC

Barrel muon trigger efficiencies

- Muons reconstructed combining Inner Detector + Muon Spectrometer information (**reduced barrel geometrical acceptance**)
- Lowest unprescaled single-muon triggers HLT_mu26_ivarmedium II HLT_mu60 (triggers seeded by L1 MU20)
- HLT track-based isolation applied (ivarmedium: $\sum p_{\text{T}}^{\text{trk}}/p_{\text{T}} < 0.07$ in $\Delta R < 0.3$)
- Efficiency with respect to offline isolated medium muons using $Z \rightarrow \mu \mu$ Tag & Probe
- No background subtraction applied

0

0.5

1

 $7 \rightarrow \mu \mu$

Efficiency

Endcap muon trigger efficiencies

- Muons reconstructed combining Inner Detector + Muon Spectrometer information
- Lowest unprescaled single-muon triggers HLT_mu26_ivarmedium II HLT_mu60 (triggers seeded by L1 MU20)
- HLT track-based isolation applied (ivarmedium: $\sum p_T^{\text{trk}}/p_T < 0.07$ in $\Delta R < 0.3$)
- Efficiency with respect to offline isolated medium muons using $Z \rightarrow \mu\mu$ Tag & Probe
- No background subtraction applied

Jet trigger efficiencies

- Jets reconstructed using the **anti-***k^t ^R* **= 0.4 algorithm** and calibrated at HLT
- Comparison of **different calibrations**:
	- Updated calibration using only calorimeter information
	- Updated calibration including additional track information
- The Global Sequential Calibration (GSC) corrects jets according to their longitudinal shower shape and associated track characteristics without changing the overall energy scale
- Efficiencies computed using the **bootstrap method**

Unprescaled single-jet trigger Unprescaled multi-jet trigger

0**سا** 0.2 0.4 0.6 $^{\circ}$ 11- 1.2 $-$

Per-event trigger efficiency

First 2017 performance

Large-*R* **jet trigger efficiencies**

- **Trimming** [\(JHEP 02 \(2010\) 084\)](http://dx.doi.org/10.1007/JHEP02(2010)084) applied to mitigate contamination from soft radiation (initial state radiation, multiple parton interactions, pileup)
- Jet trimming procedure:
	- **anti-***k^t R* **= 1.0 algorithm** used for large-R jets
	- Within a jet, recluster the constituents into subjets with radius $R_{sub} = 0.2$
	- Discard subjets if $p_{T,i} < f_{\text{cut}} \cdot \Lambda_{\text{hard}}$ ($f_{\text{cut}} = 0.05$ used)
	- Remaining subjets assembled into the trimmed jet

Offline selection: \geq 1 jet with mass $>$ 50 GeV, $ln|<$ 2 anti- k_t $R = 1.0$
trimming: $f_{\text{cut}} = 0.05, R_{\text{sub}} = 0.2$ HLT: 1 jet $p_{\tau} > 420 \text{ GeV}$ \blacktriangledown HLT: 1 jet p > 390 GeV, mass > 30 GeV

Leading large-R trimmed offline jet $p_{_}$ [GeV]

○ Mass cut also applied

ATLAS Preliminary

Second leading large-R trimmed offline jet mass [GeV]

*b***-jet trigger efficiencies**

- The ^b-jet trigger uses a **Boosted Decision Tree (BDT)** algorithm to separate ^b-jets from light and c-jet backgrounds
- BDT re-optimized to improve the ^b-tagging performance
- \circ The performance of the *b*-tagging algorithms measured using $t\bar{t}$ Monte Carlo
- \circ *b*-tagging algorithms used for *b*-jet triggers:
	- 2017 data: **MV2c10** (multivariate algorithm with a 10% ^c-jet fraction in the training)
	- 2016 data: **MV2c20** (multivariate algorithm with a 20% ^c-jet fraction in the training)
	- 2015 data: **IP3D+SV1** (impact parameter tagger, secondary vertex finding algorithm)

Missing *E***^T trigger efficiencies**

- **Pileup mitigation is the main challenge** [→] significant effort to mitigate the impact on the trigger rates and deliver more efficient pileup suppression algorithms
- \circ Efficiency of the lowest unprescaled E_T^{miss} triggers $\frac{1}{2}$ and the constructed $E_T^{\text{miss}} > 150 \text{ GeV}$ and a $W \rightarrow \mu \nu$ selection
- \circ **pufit:** baseline algorithm in 2017, E_T^{miss} calculated as the negative of the p_T sum of all calorimeter topological clusters corrected for pileup
- \circ mht: default algorithm in 2016, $E_{\text{T}}^{\text{miss}}$ calculated as the negative of the p_T sum of all jets reconstructed by the anti- k_t jet algorithm

Prospects

- The upgrades of the detectors and trigger system will be essential in the coming years to take full advantage of the physics potential of the LHC
- LHC Run-3 (2021-2023) begins after the Phase-1 detector upgrades
- HL-LHC (High Luminosity LHC) starting in 2024 with the Phase-2 detector upgrades followed by Run-4
- \circ The goal of the Phase-2 upgrades in ATLAS is to cope with an instantaneous luminosity of up to 7.5 \times 10 34 cm $^{-2}$ s $^{-1}$ and a pileup of 200 collisions per crossing

- **Significant improvements in many areas**, several hardware and software improvements during the LHC shutdown (2013-2014) to cope with the challenges to face in the LHC Run-2 (2015-2018)
- **Surpassed the initial design**, trigger menu prepared for twice the design luminosity (2 $\times\rm{10^{34}}$ cm $^{-2}$ s $^{-1}$) and high pileup conditions (μ \sim 60) expected in 2017 data taking
- **Rock-solid well-established validation procedures** to ensure a smooth trigger operation
- **First performance studies using 2017 data** of different trigger signatures (electrons, photons, muons, jets and $E_{\text{T}}^{\text{miss}}$) have been presented
- More results in:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerPublicResults