
Complexity and Unification in Physical Theory 

Pavlos G.P 
 Democritus University of Thrace 

6th International Conference on New Frontiers in Physics  

Kolymbari, Crete, 28 August 2017 

Democritus University of Thrace ICNFP2017 



Physical Theory from Past to Future 

Mechanistic reductionism, microscopical causality 

(from bottom to top) 

Holistic multiscale distributed causality 

(from bottom to top and from top to bottom)  

Irreversibility of time, novelty and creativity  



It is said that … 

• Φύσις ουδέν μάτην  ποιεί. (Αριστοτέλης) 
 

• Aristotle: mathematics are abstraction from material objects 
• Aristotle: discrimination between potential and energetic reality 
• Plato: material objects are realization of mathematical forms 
• Einstein: space time ,finite or infinite dimensional, participates in the 

physical  reality while fields and particles are geometrical properties the 
space-time manifold 

• Bohr Born, Heinsenberg: probabilism,  as possibility or potentiality ,is 
prior to the observed reality (ontological probabilism according to Popper) 

• K.Wilson: physicist try to explain nature by using only one scale but forget 
that nature is a multi scale dynamical production  

• Prigogine: material forms as dissipative structures as well physical laws 
are novelty emergence through the non equilibrium and non reversible 
physical self-organization process 

• G.Nicolis: ordering and development of long  range correlations in non 
equilibrium systems  cannot be explained by local forces. 

• P.Davies and C. Castro: in nature acts a global ordering principle 
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Tsallis Extension of Statistics 
Nonextensive Statistical Mechanics 

Microscopic Level Macroscopic Level 

 Quantum Complexity 

Quantum Phase 

Transition 

(Q.P.T.) 

 Equilibrium Phase Transition 

(E.P.T.) 

 Non – Equilibrium 

Phase Transition 

(N.E.P.T.) 



Gaussian Statistical Mechanics 

Liouville Equation – BBGKY Hierarchy 

Langevin Equations 

Fokker Planck Equation 

(Boltzmann – Vlasov Theory) 

Normal Diffusion Theory 

Statistical Entropy 

 

Thermodynamical Theory 

(Equilibrium Thermodynamics 

Fluctuation Theory 

Central Limit Theorem) 

Langevin Equation 

Partition Function Z 

Fokker Planck 

Equation 



Distributed Dynamics 
q-entropy extremization (Sq=max) 

Basic principle of nature 
 
 

• Multifractal phase space structuring 
▫ Random – intermittent timeseries - signals 
▫ q-CLT theory 

▫ q-triplet 

• Power laws, multiscale self-organization 
• Long range spatial – temporal correlations 
• Fractal – multifractal spatial distribution of fields – particles 

▫ (Non-equilibrium stationary states, NESS) 

• Fractional Dynamics – Strange dynamics on fractals 
▫ Anomalous diffusion 

▫ Fractional Langevin process – fractional random walk 
▫ Fractional Maxwell equations 

▫ FHD – FMHD 

▫ Fractional accelerations – anomalous diffusions in velocity space 

• K-energy distributions (non-equilibrium energy spectra) 
• Singular functions – multifractal timeseries 

 



What is Complexity Theory ?  

Irreversibility of time, dissipative structures, 
Entropy production and dynamics of correlations (I.Prigogine)   

Indications from statistical physics 
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Mathematical Extension 

• Hilbert Space  
• Euclidean Space 
• Gaussian Statistics 
• Smooth Diff. Functions 

• Rigged Hilbert Space  
• Non-Euclidean , Fractal Space 
• Non-Gaussian Levy Statistics 
• Singular Fractal. Functions 

   Smooth ODE-PDE                                Fractional Dynamics   
Complex Laws of Nature – Time  Irreversibility 

Classical science is a marvelous algorithm explaining natural phenomena in terms of building 
blocks of the universe and their interactions. Physical phenomena reducible to a few fundamental 
interactions 

Gregoire Nicolis  

Complexity   
• A new attitude concerning the description of nature 
• Self-organization phenomena on a macroscopic scale  
• Spatial patterns in on temporal rythms  
• Scale orders of magnitude much larger than the range of fundamental interactions 
• Order, regularization, information 
• Dissipative Structures, Symmetry breaking           sudden transition from simple to complex 



  
                                                                     Physical object-system 
  
                                                   Holistic description of nature 
  

 

Indications from Quantum Theory 

• Commutative operators  
• Coherence  
• Entaglement / Superposition 

• Non Locality of quantum states 
• Quantum Processes 
• Quantum Vaccum 
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in the quantum state – physical objects. 
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Quantum Processes as Complex Processes 

Quantum continous creativity of Nature at every scale, creation and destruction   

Quantum Field Theory : states operators and observables 

1/2

1 2 1 2
ˆ( ) , ,..., ,... , ,..., 1,...i i i ia k n n n n n n n 

1/2

1 2 1 2
ˆ ( ) , ,..., ,... ( 1) , ,..., 1,...i i i ia k n n n n n n n   

1 2 2 1
ˆ ˆ ˆ, ,..., ( )... ( ) ( ) 0 ,N Nk k k a k a k a k   ˆ ˆ[ ( ), ( )]j i ija k a k  

1 2, ,... 1 2( ) ( ) , ,...n nt t n n 

3/2ˆ ˆ( ) (2 ) ( ) ia k e d    
k x

x k Destruction  

3/2ˆ ˆ( ) (2 ) ( ) ia k e d      
k x

x k Creation  

Complex System 1 2 1 2 1 20 { , ,..., , , ,..., , , ,... ,... }N N in n nx x x k k k
Creation  

Quantum Vaccum               {states of patricles-fields-matter} 



Quantum Complexity (M-Theory) 

Operators 

ˆ ˆ ˆ, ,a a
x

• Supersymmetry 
• Super-gravity 
• Super-strings 
• Gauge Fields 
• Symmetry Breaking 
• Renormalization 

Quantum Vaccum 

0
Quantum Objects,  Quantum 

States 

• D-dimensional Space 
• Point Particles 
• Strings 
• p - branes 
• Universe 
• Multiverse 

Complex  
System 

• Quantum Unification   
 

• Time Reversibility 



Quantum Time Evolution 

• Space-Time Symmetries 
• Internal Symmetries 
• Super Symmetry  
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Reductionistic Laws of Nature 

• Basic Laws (time reversible) --  Classical Theory  

( ) 0actionS L dt   (particle and fields  
gravity) 

particles fields gravityL L L L  

• Probablilistics (Probability Amplitudes Quantum Theory)  Feynman Path Integral 

N-point quantum field corrleation amplitude (expectation value) 
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Produced-Phenomenological Laws  

Fundamental level (no entropy production) 
 
 
 
 
 
 
• Microscopic  Time 

Reversible Dynamics  
            

Phenomenological Level Entropy Production 
 
 
• Macroscopic Time irreversible Laws- 

Phases 
 

• Probabilistic or Deterministic Linear or 
non Linear Dynamics 
 

• Diffusion-Convection Fluids or Chemical  
Dynamics 
 

• Population Dynamics  
 

• Climate Dynamics ,  etc. 

Statistical 

Mechanics 



The Entropy Principle as the Fundamental Law of Nature 

Irreversible Diffusion in physical space – Holistic processes 

Irreversible Diffusion in velocity space – Holistic processes 



The Entropy Principle as the Fundamental Law 

of Nature 

Entropy production 
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                                                         Complexity Theory  
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Deterministic Time-Reversible  
Dynamical  Laws 

Fundamental Principle 
 
Global Holistic Entropy Dynamics  

Derived Laws, Local 
Interactions 



Thermodynamics as Fundamental Theory of 

Nature 

Cantor – Kelvin – Clausious – Boltzmann – Gibbs - Prigogine 

Entropy Principle through Boltzmann Complexous 

lnentS k  Fundamental Definitnion (Boltzmann 1872) 

  Number of microscopic states of the thermodynamic system 

Fundamental law of Nature 
 
 “      increases to the maximum value for isolated systems (microcanonical ensemble) “ 
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 Canonical Thermodynamic System 

 Environment  

 Isolated microcanonical system 

 

 

       

      reversible flow of entropy 

      irreversible production of entropy 
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Thermodynamic Potentials and Extremum 

Principle  
Fundamental Laws - Entropy Law 

λ 
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I.          Isolated System (microcanonical)  
 
 
 

II.           when 
 

III.            when   
 

 

IV.             when 
 
 

V.             when 
 
  

0dS 

int . .

.

U energy const
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Equillibrium-Metaequillibrium 
Thermodynamic States 

• Local minimums of Free Energy 
• Local Maximums of Entropy 

Equillibrium-Metaequillibrium Phase 
Transitions 

equillibrium

meta equillibrium



Three stages of Thermodynamic Processes 
       First Stage : Thermodynamics of Equillibrium 

 
                     (Bolzmann Probability Distribution Law) 

 
                                                       
                    probablitiy of microstate (i),               energy of the system at microstate (i)  

          
                                             partition function of the system   (canonical statistics) 
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Three stages of Thermodynamic Processes 
       First Stage : Thermodynamics of Equillibrium 

                                      
                                                   Entropy as functional of probablity 
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                                                                 number of microstates for canonical statistics 
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       Second Stage : Near Equillibrium Thermodynamics 

                                                                          
                                                                                   = equllibrium state ,           = canonical system 
 
                                                                                                   Theorem of minimum Entropy production 
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Three stages of Thermodynamic Processes 

       Second Stage : Near Equillibrium Thermodynamics 

                               Normal Fokker - Planck Equation    
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Three stages of Thermodynamic Processes 
       Third Stage : Nonequillibrium Statistical Mechanics   

Boltzmann-Gibbs, Tsallis and other entropic forms 

  Far from equillibrium Thermodynamics 
 

                                              decrease of entropy   
 
• Self-organization    

• Dissipative Structures 
• Metaequillibrium stationary states  ,  (NESS) 
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 q-Thermodynamics  
     
 
 
                                                                                                      q=1         Boltzmann-Gibbs Statistics                   
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Three stages of Thermodynamic Processes 

       Third Stage : Nonequillibrium Statistical Mechanics – Tsallis 
and other entropic forms - Fractional Processes 

Fractional Kinetics 

 
• Fractional FPE – Anomalous Diffusion    
• Fractional Dynamics on Fractals 

• Fractional Space-Time Derivatives-Integration  
 

( , )

fractional order

t x
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Fractal Time Contraction  

Processes 
 

 

 
 

• Supper (persistent) diffusion 1<α<2 

• Sub (antipersistent) diffusion 0<α<1 
• Power law waiting time distribution 

• Non-Markovian memory property 

• Long range time correlations 

t


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Fractal Space Contraction 

Processes 
 

 

 
 

• Levy Flights/walks ,  Levy-Tsallis 

• Levy non local processes 
• Power law distributions 

• Fractal Geometry (Physical/Phase) 
• Fractal Matter-Fields distributions 

x
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Mean – square displacement 

Normal – Anomalous Diffusion 

Non-equilibrium Stationary States, 

Percolation Critical States 
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H=Hurst exponent 
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μ={competition between FTRW – Levy process} 



• Stochastic Sea 

• Fractal Set (Island, Cantori) 

• Trapping – Stickiness – Levy flights 

• Lyapunov Exponents ≥ 0 

• Strange Topology – Strange Dynamics 

• Scale Invariance (RGT) 
 

Poincare Section of Phase Space 

Intermittency in Phase Space 

Levy Distribution – Anomalous Diffusion 



BBGKY Hierarchy Boltzmann - Vlassov, MHD Theory, HD Theory 

Fractional Time Derivative Fractional Real -  Space Derivative 
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Riemann – Liouville operator 

Fractal – time random walks (FTRW) 

Fractal active time (Cantor set) 

ra 1  persistent (super-diffusive) process 

10  a  anti-persistent (sub-diffusive) process 

Waiting time Power Law distribution 
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Riesz – Weyl operator 

Levy flights – Levy walks 

Power Law distribution 
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Fractional Extension 

Scale Invariance - Singularities 

Scale Invariant Distributed Dynamics 
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FRACTIONAL KINETIC EQUATION 

(FRACTIONAL FOKKER–PLANCK–KOLMOGOROV EQUATION) 
Zaslavsky G.M., Chaos, fractional kinetics, and anomalous transport, Physics Reports 371, 461-580, 2002. 
 

Strange Dynamics in Phase Space 



Three stages of Thermodynamic Processes 

Other Entropic Forms  

• Renyi ,   Curado      
• Arneodo – Plastino  
• Landsberg-Vedral 
• Abe entropy 

1q  1q  others

local gaussian correlation 

global long range correlations 

q-descripable 
non 

q-descripable 

Entropic Principles 

• Kaniadakis κ-entropy 
• Sharma-Mittal 

• Beck – Cohen superstatistics 
• Spectral Statistics 

C. Tsallis, Introduction to Nonextensive 

Statistical Mechanics, Springer, 2009 



Near Thermodynamic Equilibrium Far from Thermodynamic Equilibrium 

Euclidean Geometry-Topology 
Smooth Functions – Smooth differential Equations 
Normal derivatives-integrals 

HD – MHD – Vlason-Blotzman theory 
Normal diffusion-Brownian motion 
Gaussian statistics-dynamics 
Normal Langevin-FP equations 
Extensive statistics – BG entropy 
Infinite dimensional noise 
White-colored noise 
Normal Central Limit Theorem (CLT) 

Normal Liouville theory 
Locality in space and time 
Separation of time-spatial scales 
Microscopic-macroscopic locality 
Equilibrium RG 

Fractal Geometry -singular functions 
Fractional differential-integral equations 

Fractional HD - MHD theory 
Anomalous diffusion – motion 
Strange Kinetics, Fractional Accelerations, K-
distributions 
Non-Gaussian statistics-dynamics 
Fractional Langevin-FP equations 
Non-Extensive statistics – Extremization of Tsallis 
entropy 
q-extended CLT 
Intermittent turbulence 

Fractional Liouville theory 
(multi)Fractal Topology 
Power laws – mulitscale processes 
Memory – long range correlations 
Nonlocality in space and time 
Non-Equilibrium RG 

Theoretical Concepts 



x 

λ(i) 

Α 
Β 

C 
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Gaussian Equilibrium 
Critical States 

Equilibrium Phase 

Transition 
Power Laws 

(B) 

Self-Organization Structure 
Dissipative Structures 

Long Range Correlations 

(C) 

Spatiotemporal  Chaos 
Strange Dynamics (Attractors) 

Levy Processes 

Scale Invariance 
Intermittent Turbulence 

Tsallis Entropy 
Fractal Topology 

Anomalous Diffusion 

Fractional Acceleration 
K-Distributions 

Non – Linear Dynamics 

Critical Points 

Bifurcation Points 
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Non-Equilibriun Dynamical Phase Transitions 



Complexity Theory Entropy Principle 
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Fq (Free energy) = minimum => Nonequilibrium stationary states (NESS) 

q=1 => Boltzman – Gibbs Theory 

Tsallis Non-extensive Statistical Mechanics 

Nonequilibrium self-organization 

q-Extension of Statistics 

q-Gaussian distributions: 
Energy spectra, timeseries magnitudes 



Kappa distributions 
 

High Energy Spectra 



q - Calculus 

q-Product, q-Sum 

q-Fourier Transform (FT) 

Tsallis Theory 
Non-extensive Statistical Mechanics 



q-entropy 

Independents Sub-systems  

Statistically Dependent Sub-systems  

Tsallis Theory 
Non-extensive Statistical Mechanics 



Generalized Fokker-Planck Equations 

Levy Distribution 

q-Gaussian Distribution 

Tsallis Theory 
Non-extensive Statistical Mechanics 



( )i qq E V

q q

conf

Z e
 



/ q

q i

conf

p   1/ KT 

/q q

i i i qq
conf conf

E p E p U  

1
lnq q q qF U TS qZ


   

1
ln ,

q

q q

q

S
U qZ

T U


 
 

2

2

q q q

q

U F
C T T

T T T

  
   

  

1 2 1 2

1

1
( , ,..., ) ( ) ( )... ( ... ( )

( ) ( )

n

q n n qq
n

G x x x x x x Z J
Z J x J x

 
  

 
 

q-extension of Thermodynamics  

Non-equilibrium q-points correlations 



q-extension of Central Limit Theorem (q-CLT) 



Theory of q-triplet of Tsallis 



Multiplicative Processes in Phase Space – Physical Space 



Multiplicative Processes (Holistic timeseries production) 



Multifractal Theory 

generalized dimensions  

Wikipedia  

least-dence points 

most-dence points 

Information entropy 

Rényi entropy 

Information dimension 

Theiler J., Vol. 7, No. 6/June 1990/J. Opt. Soc. Am. A, 1055 



•Fractional Maxwell equations, fractional distributions  

•Fractional Langevin- FP equations 

•Fractional- multi scale acceleration 

•K distributions,  singular- multi fractal time series,   q-triplet 

Sq maximization produces multifractal phase space 
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Scale Invariance - RGT - Fixed Points (SOC, Chaos, Intermittency, NESS, etc.) 

Generalized Langevin Stochastic Equation  

Non-Equilibrium – Non-linear Complex Dynamics (Chang, 1992) 

Random Field Distribution Function 

Stochastic Lagrangian Dynamics 

Non-equilibrium – Non-extensive Random Field Theory (Partition Function Theory) 

Renormalization Group Theory (RGT) 



Uriel Frisch – Turbulence (The Legacy of A.N. Kolmogorov) 

‘mother – eddy’        ‘daughters 

probability density P(α) 

(β-model) 

‘p-model 

β-model cascade (eddies without space 

filling) 

Turbulence – Intermittent Turbulence 

Tsallis q-entropy principle 

singularity spectrum f(α) 

turbulence mass exponent τ(q) 

)()1()( qdqq 



Sq 

t 

qent=qsen 

qrel 

qstat 

q-triplet Tsallis 
One-Dimensional Systems (timeseries) 



Nonequilibrium (qstat, qsen, qrel) Gaussian-BG equilibrium (qstat=qsen=qrel=1) 

(qstat, qsen, qrel) 

Equilibrium BG entropy production 

Metaequilibrium PDF 
Equilibrium PDF 

Metaequilibrium q-entropy production 

Equilibrium relaxation process Metaequilibrium nonextensive relaxation process 

(q-stationary) 

(q-sensitivity) 

(q-relaxation) 

(qk-1, qk, qk+1)= qstat, qrel, qsen) q - CLT 

The q-triplet of Tsallis 



Experimental 
Verifications 



Universality 

of 

Tsallis q triplet 

• Cosmic Stars 

• Space Plasmas 
• Turbulence 
• Energetic Particles 

• Climate 
• Seismicity 

• Biology 
• Human Body 
• Economic Systems 

• Information Systems 



q-triplet Cross Correlation

q_stat, q_sen 0,590099636

q_stat, q_rel -0,101510833

q_stat 

q_rel 

q_sen 

Universality 

of 

Tsallis q triplet 



Increase 
Fm in 

q_stat 
q_sen 
f(α) – Dq 
L1 (Lyap. Expon) 

Decrease 
Sq 
Cor. Dim. (D2) 
q_rel 
 

Universality 

of 

Non-equilibrium 

Phase Transition 

Non-equilibrium 

Phase Transition Free Energy 

Non-equilibrium 

Renormalization 

Fix Points 

Equilibrium 

Far from Equilibrium 

Far from Equilibrium 



CHAOTIC ANALYSIS (SUNSPOT DYNAMICS) 



TSALLIS STATISTICS (SUNSPOT DYNAMICS) 

  

Sunspot TMS V1 Component V2-10 Component 

q relaxation 2.522±0.044 5.255±0.308 2.426±0.054 

q stationary 1.53±0.04 1.40±0.08 2.12±0.20 

q sensibility 0.368± 0.005 0.055± 0.009 0.407±0.029 

Δα=αmax-αmin 1.752± 0.003 1.133± 0.009 1.940±0.029 



Interplanetary Observations (8 March 2012) 

(Re -2,5) 

(Re -59,5) 

The locations of spacecraft ACE, CLUSTER 4, THEMIS-E and C, on 8 March 2012 
11:00 UT are shown. The green bow-shaped structure corresponds to the bow-shock, 
while the white-shaped structure to magnetopause and its axis are in the Geocentric 
Solar Ecliptic (GSE) system. 



Solar Wind – Magnetic Field 

                     Calm - qstat= 1.25 ± 0.06   Shock - qstat=1.50 ± 0.05                           ICME - qstat = 1.12 ± 0.05                            



  ACE 

(Shock Period) 

CLUSTER 4 

(Shock Period) 

THEMIS E 

(Shock Period) 

THEMIS C 

(Shock Period) 

qstationary 1.69 ± 0.03 1.50 ± 0.05 1.47 ± 0.05 1.86 ± 0.04 

qsensitivity -0.8002 ± 0.0223 -1.1787 ± 0.0717 -1.1145 ± 0.0843 -0.2246 ± 0.0149 

qrelaxation 2.656 ±0.052 4.154 ± 0.434 4.794 ±0.345 3.155 ±0.175 

Multi-spacecraft approach (Shock Period) 



Solar Energetic Particle 

          Quiet - qst at=1.08±0.03                     SEP- qstat=1.18 ±0.05                   Shock - qst at=1.77 ±0.09                  ICME - qstat=1.16 ±0.04                           



Solar Energetic Particle (Multifractal Spectrum) 

      Quiet - qsen=-3.049              SEP - qsen=-0.521             Shock - qsen=0.427               ICME - qsen=-1.563  
                Δα=0.251                              Δα=0.653                              Δα=1.483                               Δα=0.388                      

       Quiet - ΔDq=0.155               SEP - ΔDq =0.556             Shock - ΔDq =1.371              ICME - ΔDq =0.287 
          p-model=0.546                   p-model=0.612                  p-model=0.753                     p-model=0.566 



Solar Wind – Ion Flux 



Near Thermodynamic Equilibrium 

Extension of Thermodynamics 
Far from Thermodynamic Equilibrium 

• Boltzmann-Gibbs Entropy           and 
Statistics. 

• Gaussian probability density functions. 
• Normal Classical and Quantum diffusion. 

Langevin, Fokker-Planch Equations. 
• Classical Mechanics-Field Theory and 

QFT. 
• Unified Quantum Fields, Electromagnetic 

Weak, Nuclear. 
• Smooth Space-Time Manifolds Euclidean, 

Riemannian. 
• Critical Self-Organized States. 
• Seperation of Dynamics and 

Thermodynamics. 
• Matter ~ Energy  
• Equllibrium RGT and Reduction of 

dimensionality (D-finite).  
• Normal Central Limit Theorem. 

BGS • Tsallis Entropy      and other Entropies – 
Statistics. 

• Levy – Tsallis non Gaussian distributions. 
• Fractional Classical and Quantum 

Diffusion, Langevin, Fokker-Planch 
Equations.  

• Fractional Mechanics-Field Theory and 
QFT. 

• Unified E-W-N+ gravity . 
• Fractal Space-Time Sets. 
• Critical  Dissipative Self-Organized 

Structures. 
• Unification of Dynamics and 

Thermodynamics. 
• Matter ~ Energy ~ Information  
• Non Equllibrium RGT and Reduction of 

dimensionality (D-infinite).  
• q-Gaussian Central Limit Theorem. 

qS



From Thermodynamics to Classical and 

Quantum Dynamics 
• State Space Manifold  
• Classical Mechanics  

• Quantum Theory       = Hilbert space 
• Nonequillibrium Dynamics        = extended 

fractal space   

M

M

NM =

M

0 0,q t

1,q t

s

d

s
d : smooth trajectory 

: stochastic trajectory 

                   No entropy production  
 

Deterministic  

time reversible  
Dynamics 
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                     Entropy production  
 

Probabilistic  

time irreversible  
Dynamics 
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: number of microstates 

̂
 : probablility density in phase space 

: density operator in quantum states 



: entropy of the system S

: classical  Fokker-Planck operator 

ĉL : Liouville operator in classical mechanics 

: Liouville operator in quantum mechanics 

 

  : quantum Fokker-Planck operator 

ˆqL
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FPL
ˆq

FPL

M



From Probabilism and Stochasticity to 

Determinism 
Path Integral Formulation 
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   Fokker-Planck Process 
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ˆsL : Stochastic Lagrangian for Fokker-Planch equation 

                                   Quantum Mechanics (Feynman Formulation) 
 
 
 
                         Probability  = max                   Classical deterministic trajectory in phase space 
 
        Extremiztion of probablility                   Reversible deterministic Dynamics   
                stochastic Lagrangian                           deterministic Lagrangian 
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Correlations and Entropy Production  

      Stable Hamiltonial Dynamics 
                                                                                 no entropy 
                                                                                 production 

{ , } 0, 0B
p

dSdf f df
H f

dt t dt dt


    


ln

( , ) : pdf in phasespace

BS f f dpdq

f p q

  

Bogoliubov–Born–Green–Kirkwood–Yvon Hierarchy (BBGKY) 

 
                                                                                                                                         : two point correlations  
  
                                                                                                                                          : n-point correlations                                                                                                              
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Fractional Extension of BBGKY Hierarchy 

 
                                                   ,          : n-point correlations  

                                                                                                   non Gaussian statistics   
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Entropy Principles the basic tool for 

Unification 
 Entropy Principle                          Thermodynamics  : 
                                                                       Z,F many point  correlations   

       Quantum Field Theory                         n-point Green Function 
                                                                             correlations                                                                                            

Thermodynamical                                  QFT n-point Green Functions 
Correlations Cn in                                   in d-dimensional space      

(d+1) dimensional space 
 

Statistical Mechanics  (d+1) space   ~  Euclidean QFT in (d) space  
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Thermodynamics 

QFT-Thermodynamics 
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QFT as self-organization process of 

Subquantum Thermodynamics 

Hooft, Beck, Parisi , Stochastic – Chaotic Quantization 
 

                   random field ,                                                       (Random Field       
                                                                                                       Langevin  equation)   

                                                                                                         

 
,          ucnorrelated noise    
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       Random Field Fokker-Planck Equation   
 

 
 

     

Equillibrium  Solution :                                                        (stationary state) 
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   Random Field FPE                   Quantum Field Schroendinger Equation 

 ( Thermodynamics )                               (Quantum Field Theory) 
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QFT as self-organization process of 

Subquantum Thermodynamics 

   Random Field FPE                   Quantum Field Schroendinger Equation 

 ( Thermodynamics )                               (Quantum Field Theory) 

Quantum Hamiltonian Operator 
 

                                                      where  
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QFT Schroendinger Equation 
 

Time Evolution Operator                  :                                                     
 

 

 Schroendinger Field Equation :    
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First phase changes are immensely influential in every corner of the Universe-indeed it 

is widely argued that the very existence of the observable Universe is attributable to a 

phase change in the state of  some pre-existing vacuum, and that the disposition of 

matter in and around galaxies should be understood in terms of  fluctuations associated 

with some such transition (see for example Kolb and Turner 1989). 

Not only is the creation of  long-range structure by short-range inter-molecular forces 

intriguing, but any example of  scale-freedom is worthy of  close examination since this 

phenomenon occurs in several physical systems that are inadequately understood-the 

clustering of  galaxies (e.g., Peebles 1980), the distribution of  earthquakes (e.g., Carlson 

and Langer 1989, Bak et al. 1988), turbulence in fluids and plasmas (e.g., Mandlebrot 

1974), polymers (de Gennes 1972), snow flakes (Ballet al. 1989, Meakin and Tolman 

1989)-to name but a few. In each case there is a wide range of  scales over which some 

phenomenon varies as a power law of  the scale, presumably because there is a gross 

mismatch between the largest and smallest scales in the problem.  

J. Binney et al., The Theory of  Critical Phenomena: An Introduction to the Renormalization Group, 

Oxford Univ. Press, 1992. 

 Why Study Phase Transitions ? 



An elementary particle is represented by a structure of  a certain physical size on the 

lattice. As the lattice is refined this structure should retain its physical size by covering 

more and more lattice sites. Hence, as the discrete model approaches the continuum 

limit of  real quantum fields, the particle must be represented by correlations on the 

lattice of longer and longer range, and the field theory that gives rise to these 

correlations must be approaching what in statistical mechanics we would call a critical 

point. 

J. Binney et al., The Theory of  Critical Phenomena: An Introduction to the Renormalization Group, 

Oxford Univ. Press, 1992. 

 



Elementary particles as Thermodynamic self-

organization process 

Random Field                                                    n-point Corelations    
in D-dimensions                                               n-point Green’s Functions  

                                                                                n-point interactions 
 

 

 
 

 
 

where                                        ,                 field energy density,          source field 

 
 

                                                                                  Random Field Partition 
                                                                                                Funnction 
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Elementary particles as Thermodynamic self-

organization process 

Random Field  
 

• Self-organization                                       Interactive   

• Phase Transitions                                   Particle System 
• Long-range  

Correlations 

1x

2x

nx
3x

( ) x

Random Field  

Diffusion Process 
 

                                                        , velocity random variable 

 
Statistical-Thermodynamical Uncertainty Principle  

 
 

 

Stochastic Process as macroscopic quantity 

2

0( , ) ( , )f x t D f x t
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Quanticity and Stochasticity 

StochasticProcesses                    Quantum Processes 



A fundamental problem of  particle physics is the fact that there are about 25 free 

fundamental constants which are not understood on a theoretical basis. These 

constants are essentially the values of  the three coupling constants, the quark and 

lepton masses, the W and Higgs boson mass, and various mass mixing angles. An 

explanation of  the observed numerical values is ultimately expected to come from a 

larger theory that embeds the standard model. Prime candidates for this are superstring 

and M theory. However, so far the predictive power of  these and other theories is not 

large enough to allow for precise numerical predictions. 

We will report on a numerical observation that may shed more light on this problem. 

We have found that there is a simple class of  1+1 -dimensional strongly self-interacting 

discrete field theories (called ’chaotic strings’ in the following) that have a remarkable 

property. The expectation of  the vacuum energy of  these strings is minimized for 

string couplings that numerically coincide with running standard model couplings α(E), 

the energy E being given by the masses of the known quarks, leptons, and gauge 

bosons.  

C. Beck, Chaotic strings and standard model parameters, Physica D: Nonlinear Phenomena, 171, 72-106, 2002. 



The dynamics of  the chaotic strings is discrete in both space and time and exhibits 

strongest possible chaotic behaviour. It can be regarded as a dynamics of  vacuum 

fluctuations that can be used to 2nd-quantize other fields, for example ordinary 

standard model fields, or ordinary strings, by dynamically generating the noise of  the 

Parisi-Wu approach of stochastic quantization on a very small scale. Mathematically, 

chaotic strings are coupled map lattices of  diffusively coupled Tchebyscheff  maps TN 

of  order N. It turns out that there are six different relevant chaotic string theories - 

similar to the six components that make up M-theory in the moduli space of 

superstring theory. 

Chaotic strings can thus be used to provide theoretical arguments why certain 

standard model parameters are realized in nature, others are not. We may assume that 

the a priori free parameters evolve to the local minima of  the effective potentials 

generated by the chaotic strings. Out of  the many possible vacua, chaotic strings may 

select the physically relevant vacuum of  superstring theories. 

C. Beck, Chaotic strings and standard model parameters, Physica D: Nonlinear Phenomena, 171, 72-106, 2002. 



We argue that the quantized non-Abelian gauge theory can be obtained as the infrared 

limit of the corresponding classical gauge theory in a higher dimension. We show how 

the transformation from classical to quantum field theory emerges, and calculate 

Planck's constant from quantities defined in the underlying classical gauge theory. 

Although much progress has been made in recent years, the question, how gravitation 

and quantum mechanics should be combined into one consistent unified theory of 

fundamental interactions, is still open. Superstring theory, which describes four-

dimensional space-time as the low-energy limit of  a ten- or eleven-dimensional theory 

( “M-theory”), may provide the correct answer, but the precise form and content of 

the theory is not yet entirely clear. It is therefore legitimate to raise the question 

whether the fundamental description of  nature at the Planck scale is really quantum 

mechanical, or whether the underlying theory could be a classical extension of  general 

relativity. This questions was initially raised by 't Hooft, who has argued that quantum 

mechanics can logically arise as low-energy limit of  a microscopically deterministic, 

dissipative theory 

T.S. Biro et al., Chaotic Quantization of  Classical Gauge Fields, Foundations of  Physics Letters, 14(5), 2001. 



We here show that in some cases, specifically for non-Abelian gauge fields, the 

functional integral of  the three-dimensional Euclidean quantum field theory arises 

naturally as the long-distance limit of the corresponding classical gauge theory defined 

in (3+1)-dimensional Minkowski space. Because of  the general nature of the 

mechanism underlying this transformation, for which we have coined the term chaotic 

quantization, it is expected to work equally well in other dimensions. For example, the 

four-dimensional Euclidean quantum gauge theory arises as the infrared limit of  the 

(4+1)-dimensional classical gauge theory. We emphasize that the dimensional reduction 

is not caused by compactification; the classical field theory does not exhibit periodicity 

either in real or imaginary time. 

T.S. Biro et al., Chaotic Quantization of  Classical Gauge Fields, Foundations of  Physics Letters, 14(5), 2001. 



Stochastic Process as macroscopic quanticity 
Quanticity and Stochasticity 

StochasticProcesses                    Quantum Processes 

Fokker-Planck Equation 
 

                                                         ( Feynman-Kac Formuma) 

 
 
 

                                                                 ( Schroendinger Equation ) 

 
Quantum Theory ~ Subquantum Stochastic Processes 
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       all microstates                                                          quantum eigenstates 
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Cosmic Thermodynamics – Cosmic Novelty 

1 2 ....

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The Cosmic Tree 

of Bifurcation 



The Cosmif Fractal 

 Entropic non-Equillibrium Cosmos 

 

 
Symmetry Breaking-Cosmic self-organization 

Cosmic Renormalization 

• Cosmic Fractal self-similarity 
• Long Range Space-Time 

Correlations 
• Cosmic Evolution 
• Reduction of Dimensionality  
• Symmetry Breaking 
• Multiplicative Structuring 
• Non-Linear Evolution 
• Entropy and Information 

Production 
• Goedel non-Computable  

non-Algoritmic Dynamics 

• Cosmic Self-Organization 
• Multi-level Renormalization 
• Fixed Points  
• Bifurcation Points 
• Multiscale Cohenrence – Cooperations 
• Entropy Principle Cronos Principle 
• Contraction of Fractal Space-Time 
• Scale Relativity 
• Scale Unification 
• Fractal Laws  
• Dissipative Structures  
• Symmetries 
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for your attention 


