

DROPLET DEP AND BIODEVICES

KARAN V. I. S. KALER

Biosystems Research And Applications Group,

Department of Electrical and Computer Engineering,

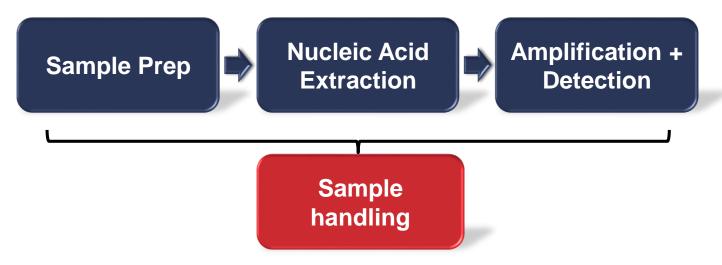
University Of Calgary

kaler@ucalgary.ca

Workshop: Ions for cancer therapy, space research and material science Chania, August 28th-29th, 2017

Presentation Outline

> Droplet microfluidic nucleic acid diagnostic system requirements


- Sample preparation; Nucleic acid extraction; Sample/reagent handling; Nucleic acid amplification and detection
- Droplet microfluidics (DMF) and different schemes for electro-actuation of droplets;
 Dielectrophoresis (DEP) for sample dispensing and handling;
- > Anatomy of Micro/Nano fabricated DMF devices
- > DMF measurement system

Validation of DMF based nucleic acid diagnostic platform

- Illustration of DEP based sample preparation using yeast cell samples, functionalized beads
 qRT-PCR detection of Influenza A virus in a clinical blind panel
- Detection of multiple respiratory panel viruses (Influenza A, Influenza B) in a clinical blind panel
- >On-chip extraction and qRT-PCR amplification of different MS2 bacteriophage samples
- > Summary of current capabilities and future goals

Sample-to-Detection In Nucleic Acid Based Diagnostics

- The four components of nucleic acid based point-of-care diagnostic system;
- Droplet Microfluidic approach towards miniaturized sample handling and integration of the different components on a single microfluidic device.

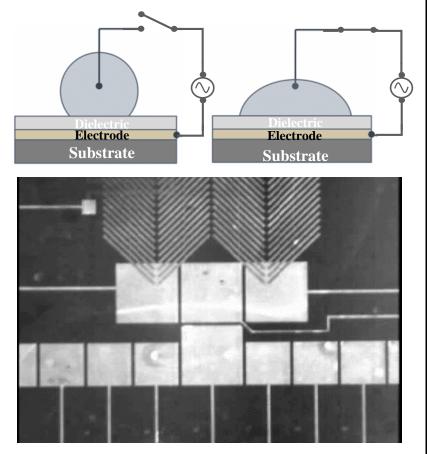
- Sample and reagent dispensing;
- Mixing and separation of different samples/reagents;
- DEP based handling of liquid samples, multiphase media and particle samples for biological applications

Droplet Microfluidics (DMF) for Sample Handling

Droplet based Microfluidics:

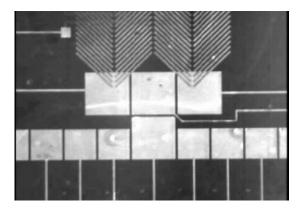
- Droplet based open channel/surface microfluidic technology (consist of patterned micro-electrodes/insulated top surfaces)
- Controlled dispensing of aqueous sample/reagent droplets (µL-pL volume)
- Aqueous sample dispensing, manipulation (transportation, mixing/splitting, thermal cycling) achievable in parallel, automated fashion
- Suitable for low-volume, parallel and multiplexed bio-diagnostic assays

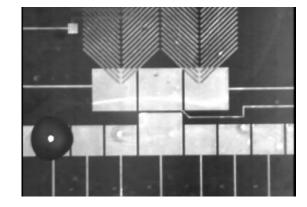
Salient features of DMF:

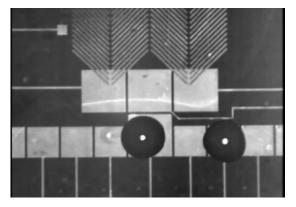

- Reduced volume of bio- samples/reagents
- Rapid testing and high throughput screening
- Custom micro-fabrication of devices tailored for target application
- Ease of integration of sensor technology (waveguides, CMOS/CCD sensors)

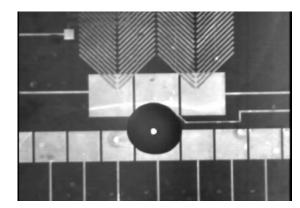
Electro-actuation Of Droplets

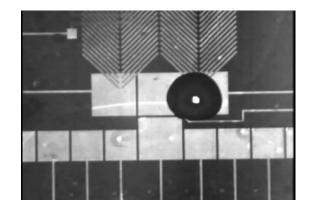
Utilizes suitably energized electrode architectures to facilitate one or more microfluidic applications (sample dispensing, transport, mixing/splitting etc...)

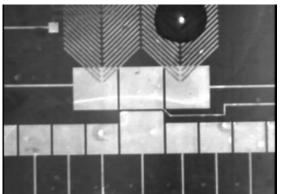

Droplet Manipulation: EW and DEP

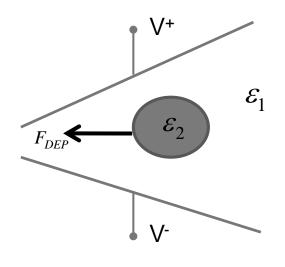

- Electrowetting (EW) modulates the liquid contact angle using an applied voltage
- Single surface EW can be achieved using a patterned, dielectrically passivated electrode arrays and superhydrophobic surfaces
- EW droplet transport is produced as a result of active electrode switching




A single surface Electrowetting DMF device


SNAPSHOTS OF EW AND DEP DROPLET ACTUATION



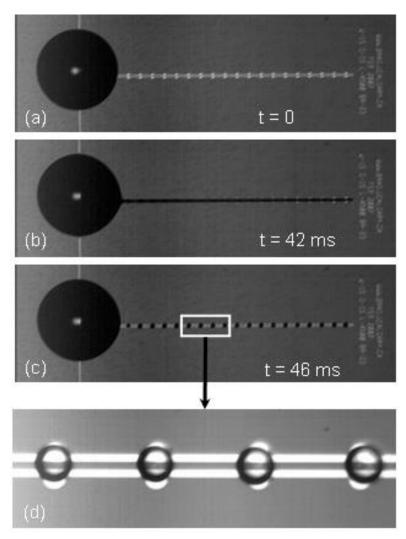


DIELECTROPHORESIS (DEP)

An electromechanical effect that results from the interaction of a nonuniform electric field with polarizable matter (dielectric particles, biological cells, fluid media, etc...)

 $\vec{F}_{DEP} = \vec{P} \bullet \nabla \vec{E}$

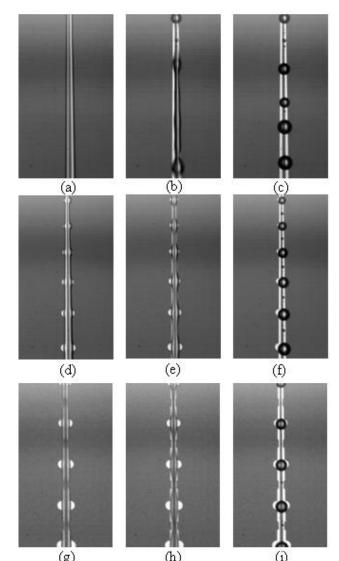
 $\vec{F}_{DFP} \propto \overline{\nabla E^2}$


<u>Positive DEP</u> ($\mathcal{E}_2 > \mathcal{E}_1$) Body force impels it into a region field of intensity maxima.

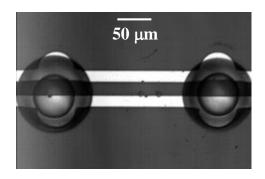
<u>Negative DEP</u> ($\mathcal{E}_2 < \mathcal{E}_1$) Body force impels it into a region of field intensity minima

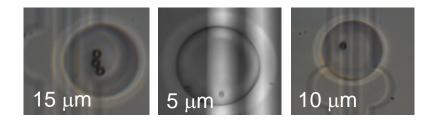
DEP For Sample Dispensing And Handling

• Liquid DEP (LDEP): Manipulation of dielectric fluids using spatially non-uniform electric field


(a-c)A liquid rivulet originating from the parent droplet (DI water), conveyed along the full electrode length (average actuation speed ~6cm/sec

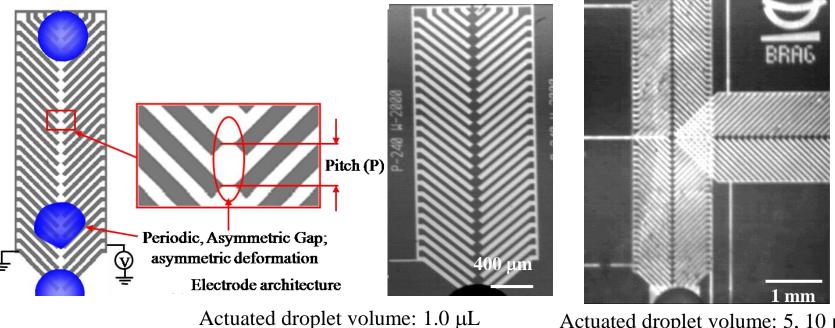
liquid rivulet breakup into individual droplets when the voltage is removed (electrode width (w) = 15 μ m, electrode spacing (s) = 15 μ m, actuation voltage = 210V_{RMS} at 100 kHz);


liquid rivulet breakup into individual droplets when the voltage is removed (electrode width (w) = 15 μ m, electrode spacing (s) = 15 μ m, actuation voltage = 281V_{RMS} at 100 kHz);


DEP FLUIDIC SAMPLE DISPENSING EXAMPLES

Variable volume dispensing schemes

Multiphase vesicle dispensing

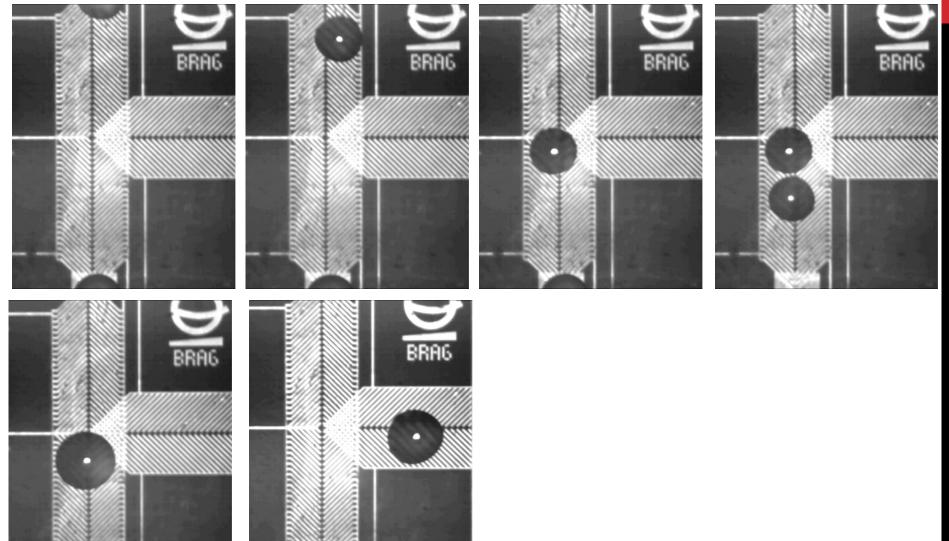

Functionalized microbeads of various sizes dispensed in ultra-low conc.

DEP For droplet Handling

DEP based droplet transport and mixing

Electrostatic droplet actuation (or, D-DEP):

- Utilizes herringbone shaped electrode to transport and mix sample droplets;
- Low voltage (<100 Vpp), low frequency (<90 Hz) electrostatic actuation (low electrical power requirement)
- Suitable for droplet transport, mixing and thermal cycling

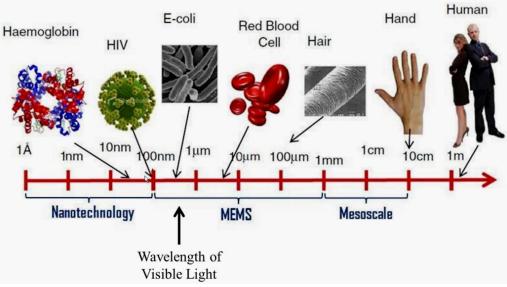


Sample transport

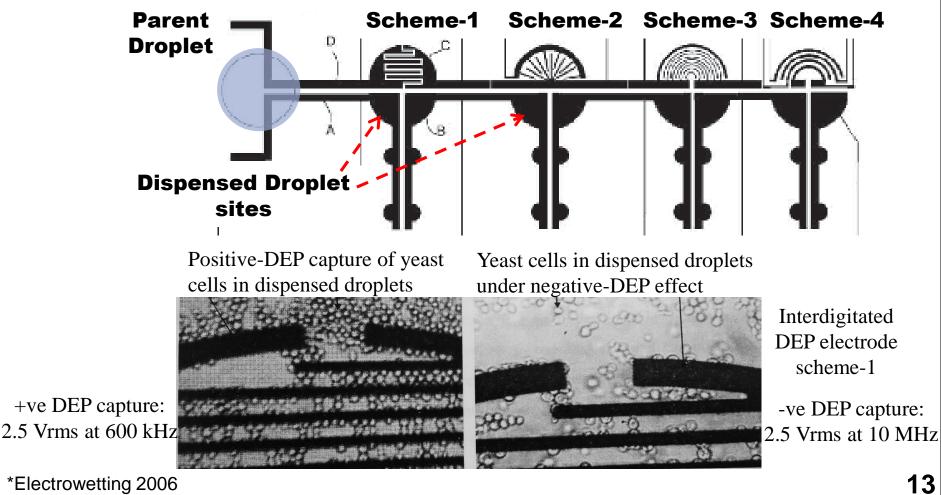
Sample/reagent mixing

Actuated droplet volume: 5, 10 µL

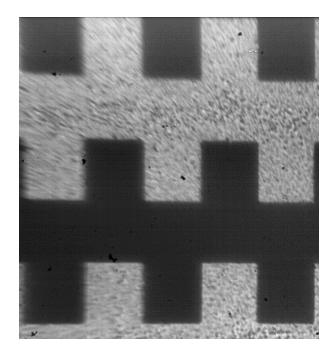
DEP For Sample Dispensing and Handling Snapshots

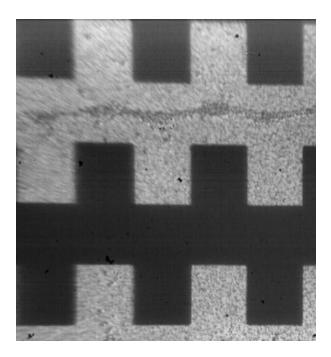

Chip Based Sample-to-Detection For Nucleic Acid Based Diagnostics

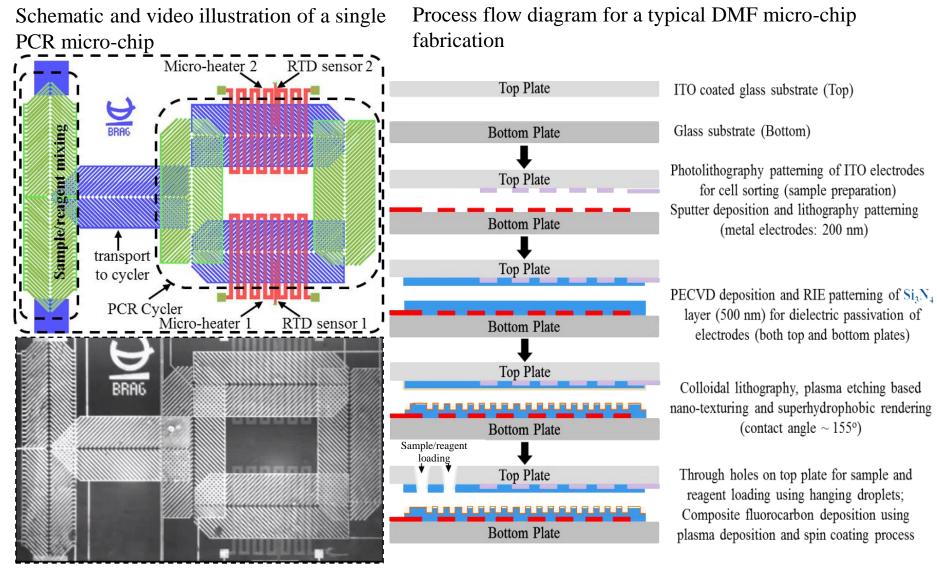
- Road-map for the development of a nucleic acid based diagnostic microsystem;
- Integration of the existing and newly developed droplet technologies on a microsystem platform


Characteristic Length Scales

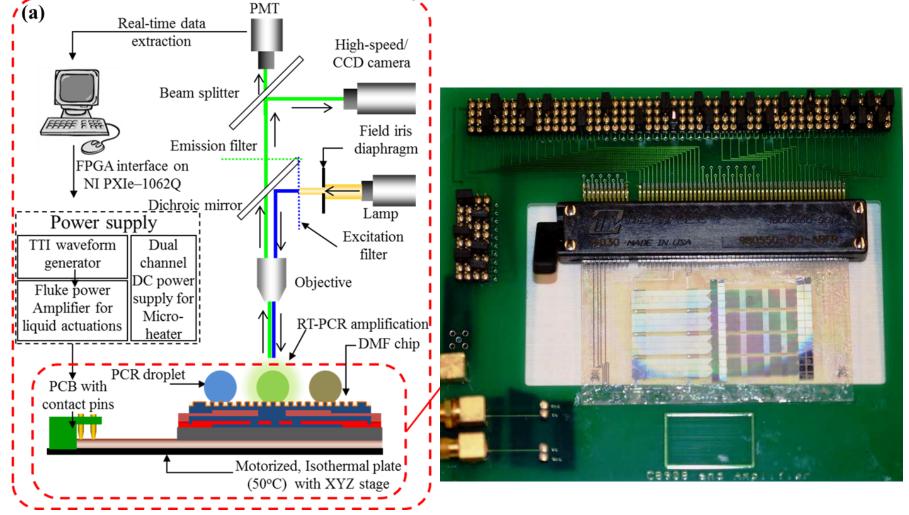
- Sample preservation in suitable transport medium (UTM);
- Chemical/electro-chemical dissolution of fiber and complex protein matrix;
- DEP based cell sorting/separation as a method for pre-concentration in the raw clinical samples


DEP Based Sample Preparation: Cell And Micro-Particles


- Multi-frequency, travelling wave DEP (TW-DEP) electrode schemes can be used for particle/cell sorting during sample preparation
- Schemes 1-4 utilize interdigitated DEP electrodes for sorting/separation of target cells in dispensed biological sample droplets

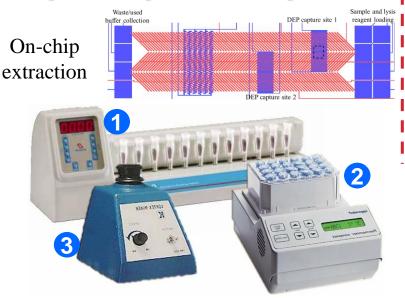

DEP Based Sample Preparation: Illustrations for RNA-binding Bead Capture

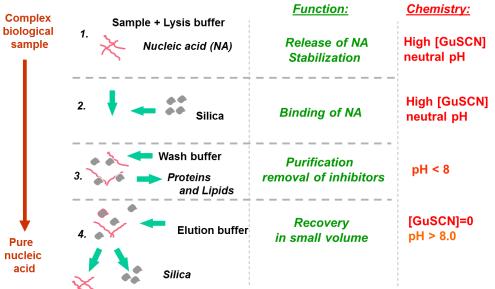
- Example of bead capture on other DEP electrode structure ($w = g = 50 \mu m$)
- Higher actuation voltage requirement (Vpp = 120 V)
- Bead re-collection in field minima (null regions) using negative-DEP
 - Capture freq.: ~550 kHz for capture over electrode; along electrode length


Anatomy Of Micro/nano Fabricated DMF Devices*

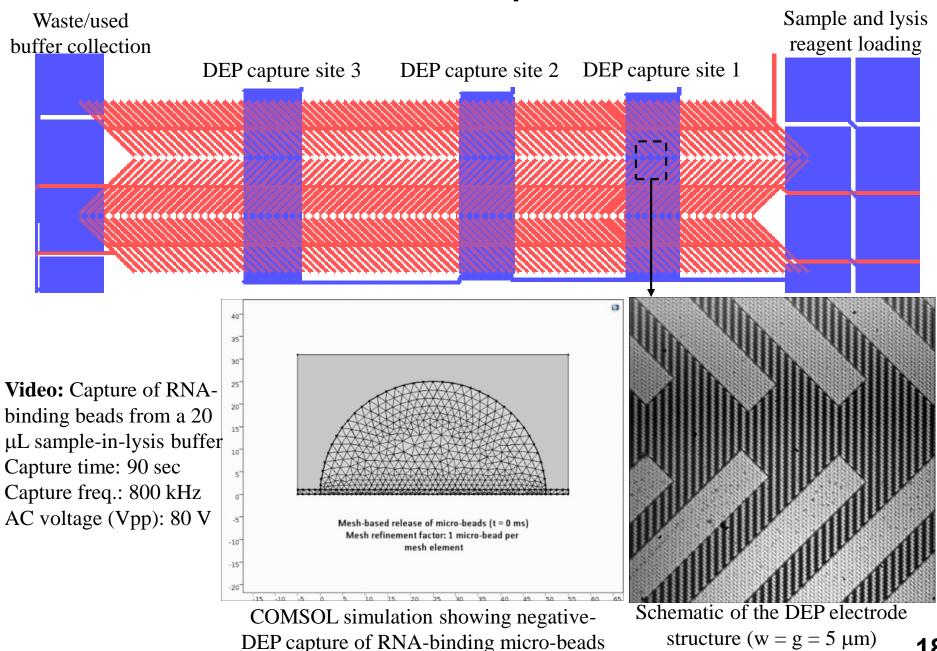
*J. Elec. Soc. 2014

DMF Measurement System

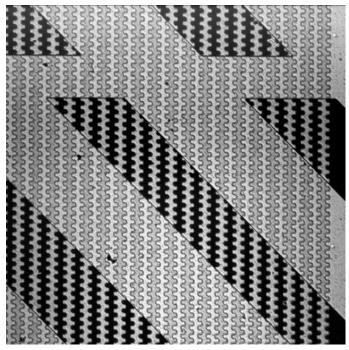

Schematic of the microscope based measurement system (for fluorescent based quantitative analysis)


Sample-to-Detection In Nucleic Acid Based Diagnostics

- Chemical and electro-chemical disruption of cells and virions;
- DEP based washing, capture and purification of the extracted nucleic acids; (next slide)
- Low reagent volume requirements and multiplexed sample extraction capabilities;


Boom™ Chemical Extraction Method

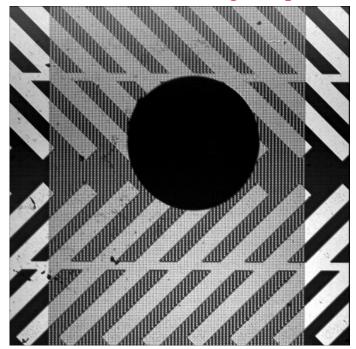
Components of a conventional extraction set-up


- 1. NucliSens mini MAG
- 2. Thermo shaker (200 2000 rpm; Eppendorf)
- 3. Vortex

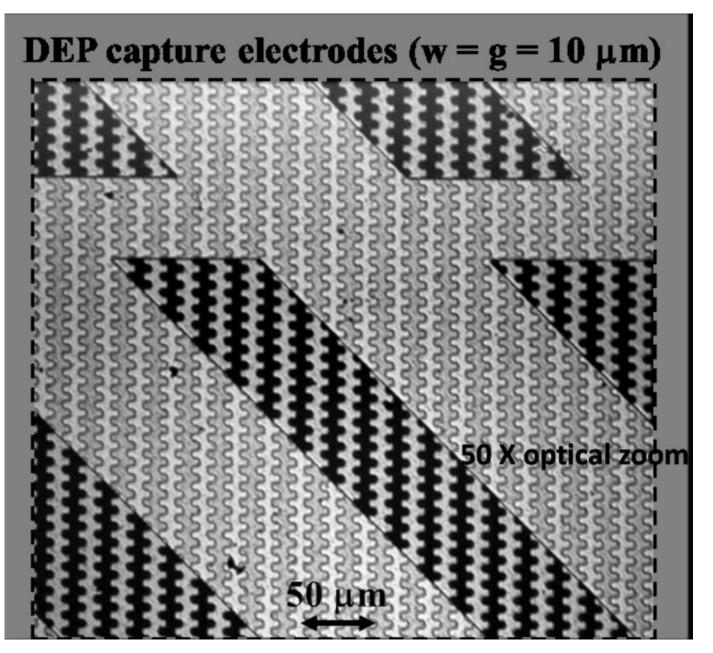
DEP Electrodes For Chip Based Extraction

Video Illustrations Of DEP Based Microbead Capture and Re-collection

- Bi-directional droplet actuation using D-DEP (10-20 μ L)
- Mag-bind® bead ($2.0 \ \mu m$) capture from lysis-sample mixture ($20 \ \mu L$) (Step 1)
- Bead re-collection during VHB and SPR buffer wash step (20 μL)
- Elution of purified nucleic acid into RNAse free PCR water (~ 12μ L)



Micro-bead capture (Step 1)


Capture time: 90 sec

AC frequency: ~800 kHz, voltage: 60Vpp for negative DEP capture;

Re-collection/ washing time: 90 sec Micro-bead washing (Step 2)

DEP Based Nucleic Acid Extraction (Video)

Clinical Validation Of the Chip Based Nucleic Acid Extraction and Purification (Panel 1)

- Blind panel of Nasal Swab samples (Clinical)
- Four sample anonymized clinical panel subjected to the on-chip Nucleic acid extraction and purification assay; samples run in triplets to test reproducibility of the chip based extraction assay;
- MS2 (conc.:10⁻³) was used as internal control in all the on-chip and easyMag[™] extraction experiments.
- MS2 is a bacteriophage with an RNA genome, suitable to characterize viral extractions

Sample Number	Chip C _t (Flu A)	ProvLab C _t (Flu A)	Chip C _t (MS2)	ProvLab C _t (MS2)				
1a	Neg.							
1b	Neg.	Neg.	26.95	27.5				
1c	Neg.				Repeatability of the			
2a	21.09				on-chip nucleic acid			
2b	20.91	20.50/21.20	26.87	27.5	extraction and			
2c	20.88				purification			
3 a	30.43	29.80/29.80 Neg.	29.80/29.80					
3b	29.40			27.35	27.50	RT-PCR efficiency of		
3c	29.55				chip extracted nucleic			
4a	Neg.			leg.			acids: ~ 94-95 %	
4b	Neg.		26.40	27.50				
4c	Neg.							

Clinical Validation Of the Chip Based Nucleic Acid Extraction and Purification(panel 2)

- Blind panel of co-infected nasal swab samples (Clinical)
- Eight sample anonymized panel (clinical samples), reflecting co-infections (three respiratory viruses, FluA, FluB and RSV with different viral loads categorized as Hi and Lo) to the on-chip extraction and assay; samples run in triplets to test reproducibility of the chip based extraction;
- Each panel sample was extracted in duplex to yield a combined extracted volume of 25 μ L, suitable for a four-panel RT-PCR analysis for the three targets and the internal control (MS2).
- Successful extractions from wide ranged co-infection samples illustrate the robustness of the sample preparation chip.

0		ProvLab	CHIP	ProvLab	CHIP	ProvLab	CHIP
Sample Name	Targets	<mark>Flu A</mark>	<mark>Flu A</mark>	Flu B	Flu B	RSV	RSV
3.1	FluA-Hi, FluB-Lo, RSV-Hi	<mark>17.44</mark>	<mark>18.79</mark>	23.60	21.75	<mark>21.45</mark>	<mark>22.01</mark>
3.2	FluA-Hi, FluB-Hi, RSV-Lo	<mark>17.44</mark>	<mark>18.83</mark>	18.59	20.09	<mark>31.64</mark>	<mark>30.04</mark>
3.3	FluA-Lo, FluB-Lo, RSV-Hi	<mark>27.54</mark>	<mark>27.82</mark>	23.65	21.05	<mark>21.45</mark>	<mark>20.54</mark>
3.4	FluA-Lo, FluB-Hi, RSV-Lo	<mark>27.54</mark>	<mark>28.01</mark>	18.59	19.62	<mark>31.64</mark>	<mark>29.85</mark>
3.5	FluA-Hi, FluB-Hi, RSV-Hi	<mark>17.44</mark>	<mark>18.71</mark>	18.59	19.69	<mark>21.45</mark>	<mark>20.92</mark>
3.6	FluA-Lo, FluB-Lo, RSV-Lo	<mark>27.54</mark>	<mark>28.25</mark>	23.65	20.96	<mark>31.64</mark>	<mark>29.25</mark>
3.7	FluA-Hi, FluB-Lo, RSV-Lo	<mark>17.54</mark>	<mark>18.50</mark>	23.65	20.96	<mark>31.64</mark>	<mark>29.76</mark>
3.8	FluA-Lo, FluB-Hi, RSV-Hi	<mark>27.54</mark>	<mark>27.08</mark>	18.59	18.75	<mark>21.45</mark>	<mark>20.35</mark>

RT-PCR efficiency of all chip extracted nucleic acid samples lie within ~ 94-95 % (bench-top RT-PCR efficiency ~ 97-98 %)

Clinical Validation Of the Chip Based Nucleic Acid Extraction and Purification (Panel 3)

- Blind panel of **Blood plasma** samples (Clinical)
- Two anonymized clinical samples (plasma samples) subjected to the on-chip Nucleic acid extraction and purification assay; samples run in duplex to test reproducibility of the chip based extraction assay;
- MS2 (conc.:10⁻³) used as internal control in all the on-chip and EasyMagTM extraction experiments.

Sample ID	Sample type	ProvLab Ct	Chip Ct	Chip Ct for MS2 (Internal Control)
1 (a, b)	Plasma (Echo18)	33.50	34.08	25.80
2 (a, b)	Plasma (CoxA6)	27.68	28.96	26.10
3	Neg. (MS2)	26.50	25.44	25.44

• Overall proficiency table for the performance of the DEP nucleic acid extraction and purification chip

	Chi			
Gold Standard (EasyMag™)	No. of Tests	Positive	Negative	
	Positive	40	0	No loss of sensitivity
	Negative	0	10	
		No loss of Specificity		

Sample-to-Detection In Nucleic Acid Based Diagnostics

- Optical and/or electro-chemical read-out during PCR amplification and detection;
- Real-time PCR or, end-point PCR read-out.

- Real-time PCR curves obtained using a scanning Photomultiplier tube;
- qPCR and standard quantification of target DNA template;
- qRT-PCR assays for 1-step amplification and quantification of RNA samples (includes a reverse transcription stage to convert RNA to λ -DNA;
- Spatially and spectrally multiplexed PCR reactions for panel PCR assays.

PCR And The Current State Of Technology

- qPCR: A real-time, quantitative PCR assay where detection and quantification of the amplified template occurs in real-time, during the PCR thermal cycling.
- Existing bench-top set-ups can achieve up to six parallel real-time PCR assays in ~ 30-40 minutes
- Existing commercial equipment range from \$40,000 -\$100,000 USD

Micro-systems and Miniaturization of qPCR and real-time PCR Technology

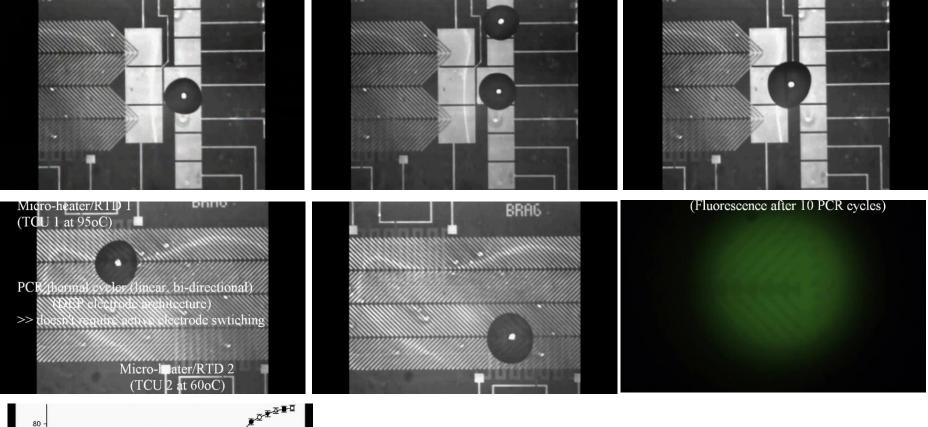
- Recent attempts to minimize the sample volume requirements by incorporating microfluidic technology
- E.g.: The Droplet Digital PCR System (Bio-Rad) and Quantstudio Flex real-time/digital PCR system (Applied Biosystems) illustrate application of a microfluidic system for controlled sample preparation and dispensing of multitude of PCR droplet arrays.

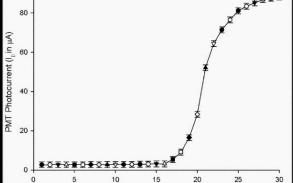
ABI 7500 Fast (Applied Biosystems)

QuantStudio™ Flex rt-PCR System (Applied Biosystems)

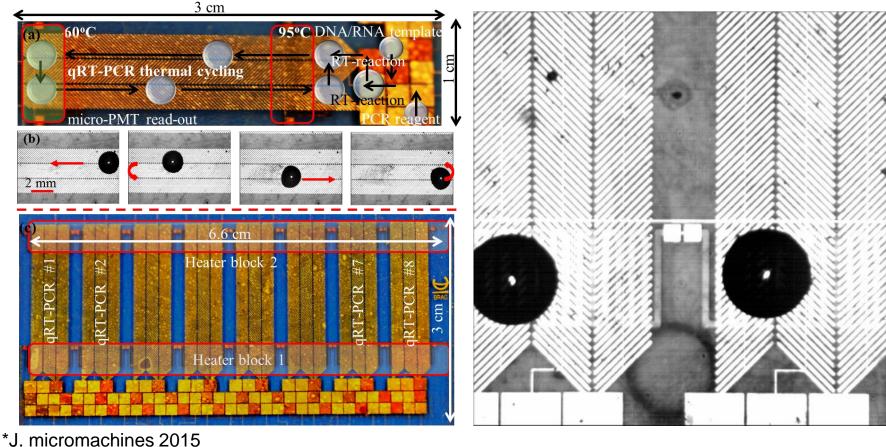

Rotor-Gene 6000 (Corbett)

Mx3000P (Agilent)



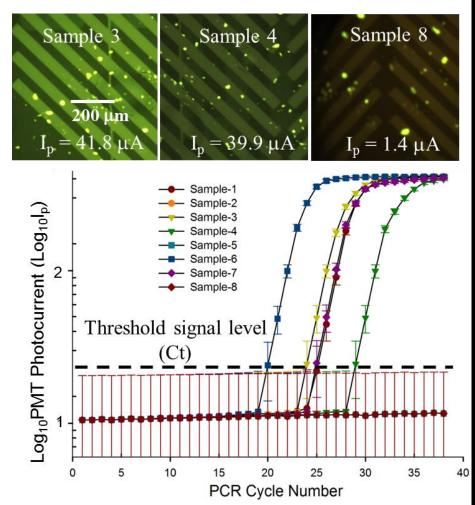

QX200[™] Droplet Digital PCR System (Bio-Rad)

qRT-PCR Detection Of Influenza Viruses


qRT-PCR Detection on DMF device

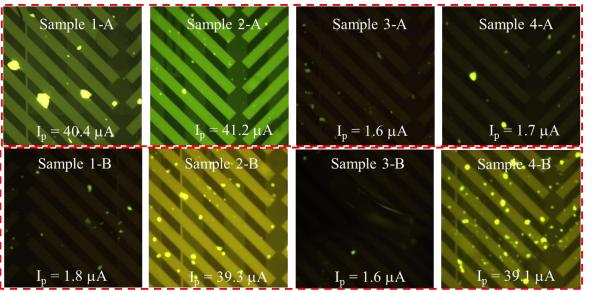
Multiplexed qRT-PCR Detection Of Influenza Viruses*

- PCR reaction volume: 10 µL
- Integration of droplet electro-actuation and resistive heater blocks for up to eight parallel, automated qPCR assays
- Reaction time: ~ 40 minutes for 36 cycles
- PMT scanning set-up for extraction of quantitative curve during the multiplexed qPCR reactions
- Video illustrates two adjacent PCR droplets during a multiplexed qRT-PCR assay



Multiplexed qRT-PCR Detection Of Influenza A Blind Panel*

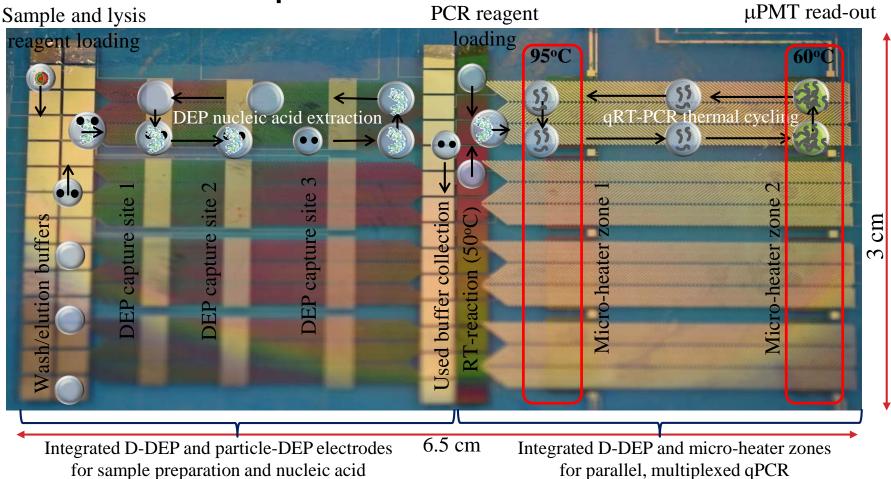
• Six sample Influenza A blind panel


Sample No. Target		CDC-M Ct	pdm09 Ct	Chip Ct
1	FluA; pdm09	29.53	26.82	25
2	Resp neg	Neg	Neg	Neg
3	FluA; pdm09	29.85	25.71	24
4	FluA; pdm09	31.75	32.89	30
5	Resp neg	Neg	Neg	Neg
6	FluA; pdm09	24.12	21.02	20
(+ve control)	FluA; H3	~29	n/a	26
(-ve control)		Neg	Neg	Neg

- Spatially multiplexed qRT-PCR micro-device was used to conduct the Influenza A blind panel test
- Real-time, continuous-mode PMT read-out for five Influenza A +ve samples and the -ve control sample.

Multiplexed qRT-PCR Detection Of Influenza A, Influenza B Mixed Blind Panel*

• Four sample Influenza A, Influenza B blind panel


FAM[™] as Fluorophore for Influenza A

VICTM as Fluorophore for Influenza B

	Panel Sample No.	Sample Type	Target	CDC Ct	Chip Ct
	1-A	Nasopharyngeal Swab	FluA	29.18	27
	1-B	Nasopharyngeal Swab	FluB	Neg	Neg
	2-A	Nasopharyngeal Swab	FluA	27.29	24
	2-B	Nasopharyngeal Swab	FluB	27.6	25
	3-A	Nasopharyngeal Swab	FluA	Neg	Neg
	3-B	Nasopharyngeal Swab	FluB	Neg	Neg
nes	4-A	Nasopharyngeal Swab	FluA	Neg	Neg
	4-B	Nasopharyngeal Swab	FluB	30.42	28

*J. micromachines 2015

Integrated Sample-to-detection Droplet Microfluidic Chip

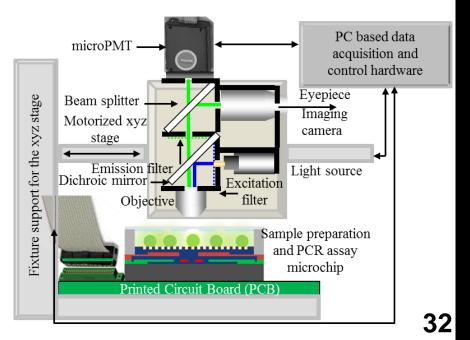
• Panel of clinical samples (up to four samples) can be prepared;

• Whole nucleic acid from the samples extracted and purified;

extraction

- Parallel, RT-PCR amplification and quantification of pathogenic RNA/DNA;
- Sample-to-detection achieved in up to four hours; in four clinical samples

amplification and detection


Current Capabilities and Future developments

- Nano-textured micro-devices for parallel, multiplexed RT-PCR assays
- Nano-textured micro-devices for electro-chemical disruption/lysis of viral and bacterial pathogens in clinical samples
- Integrated micro-device for rapid, parallel sample preparation (nucleic acid extraction, purification) and multiplexed RT-PCR amplification
- A miniaturized fluidic microsystem platform for sample-to-detection assay
- Polymer MFD for disposable micro-devices (lower cost platform)
- Disposable MFD for other pathogenic targets (Dengue, Zika, West Nile)
- Extending the microsystem towards post-amplification applications (sub-typing, sequencing, deep sequencing

Other Capabilities:

- Vesicles for drug delivery, cell-on-chip;
- Multiplexed combinatorial bio-assays;
- Molecular beacon[™] based DNA quantification and detection assay;

Schematic of the proposed integrated microsystem platform for point-of-care diagnostic application

Research Team

BRAG (University of Calgary)

• Prof. Karan V.I.S Kaler

Provincial Laboratory for Public Health of Alberta, Calgary

- Dr. Ravi Prakash
- Dr. Raymond Tellier
- Ms. Kanti Pabbaraju
- Ms. Sallene Wong
- Ms. Kara Gill

Funding sources

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- CMC Microsystems Canada (Microfabrication, travel and materials)
- Alberta Cancer Research Institute/ AIHS

