BIOLEIR

Maurizio Vretenar on behalf of Manjit Dosanih, using slides by Silvia Schuh for the BioLEIR Study Group

Contributors

D. Abler^{1,2}, T. Amin^{1,3}, J. Axensalva¹, S. Baird¹, M. Battistin¹, N. Bellegarde¹, J. Borburgh¹,
A. Broche¹, C. Carli¹, E. Carlier¹, O. Choisnet¹, J.-M. Cravero¹, M. Di Castro¹, J. Devine¹,
M. Dosanjh¹, A. Dworak¹, R. Froeschl¹, J.M. Garland¹, A. Garonna^{1,4}, S. Ghithan¹, S. Gilardoni¹,
B. Goddard¹, A. Gutierrez¹, A Huschauer¹, E. Jensen¹, S. Jensen¹, J. Jowett¹, B. Jones^{1,5}, V. Kain¹,
R. Kersevan¹, D. Küchler¹, J.-B. Lallement¹, M. Lazzaroni¹, A. Lombardi¹, R. Lopez¹, D. Manglunki¹,
D. Mcfarlane¹, A. Milanese¹, Y. Muttoni¹, D. Nicosia¹, P. Ninin¹, M. Nonis¹, J. Osborne¹, S. Pasinelli¹,
R. Rata¹, G. Riddone¹, G. Roy¹, I. Ruehl¹, S. Schuh¹, R. Scrivens¹, M. Silari¹, R. Steerenberg¹,
M. Tavlet¹, V. Toivanen^{1,6}, G. Tranquille¹, A. Tursun¹, F. Valentini¹, M. Wilhelmsson¹

Editorial Board Members

C. Carli¹, M. Dosanjh¹, S. Ghithan¹, B. Goddard¹,
 D. Manglunki¹, G. Roy¹, S. Schuh¹, R. Steerenberg¹

Historical Perspective

Add light ions at LEIR to provide ample beam for a biomedical research facility, whenever LEIR is not accelerating heavy ions

Physics for Health Conference 2012 major papers

- Feasibility study for a biomedical experimental facility based on LEIR at CERN, Abler D, Garonna A, Carli C, Dosanjh M, Peach K, J Radiat Res. 2013 Jul; 54 Suppl 1
- b) A possible biomedical facility at the European Organization for Nuclear Research (CERN), Dosanjh M, Jones B, Myers S, Br J Radiol. 2013 May; 86(1025)
- c) A community call for a dedicated radiobiological research facility to support particle beam cancer therapy, Holzscheiter MH, Bassler N, Dosanjh M, Sorensen BS, Overgaard J, Radiother Oncol. 2012 Oct;105(1)

First BioLEIR ideas 2005 U. Amaldi & M. Dosanjh

Workshop *"Possible Medical Facility at CERN"*: 2012

Regular Meetings on Translational Research in Radio-Oncology and Physics for Health ICTR-PHE Conferences & "Divonne Meetings":

• 2012

- 2014
- 2016

All yield a consistent message :

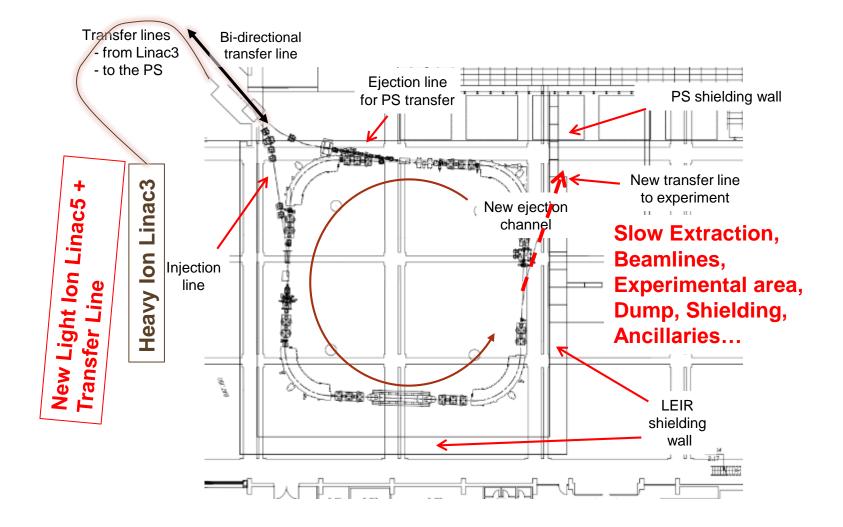
BioLEIR is an essential initiative for the biomedical community!

BioLEIR facility outline

Biomedical Motivation

Potential **impact of BioLEIR** in the biomedical field & on clinical protocols

- Systematic understanding of RBE (Relative Biological Effect)
 - reduce uncertainties in dose calculations & dose delivery rational under-/over-dosage
- Systematic study: which type(s) of ions most effective for which cancer(s)
 - Explore the full range of light ions, up to O (same beam parameters , reduced systematics)
 - Clinical settings reclinical operations prime over non-clinical research access relimited beamtime available relittle freedom to "play" with beam settings (certification)
- Ion type for next generation of hadrontherapy centres (f.e. based on a PIMMS2)
- Particle range Ballistics Fragmentation
- * Detectors suitable for beam monitoring and dosimetry
- Imaging tools
- * Treatment planning tools (MC, RBE, LET, tumour painting)
- Real-time tumor tracking and dose delivery, motion mitigation
- * Big data



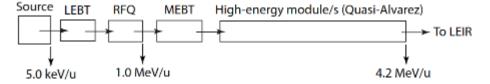
Facility Requirements / Parameters

- H, He, Li, Be, B, C, N, O (with new light ion Linac)
- Heavier ions from Linac 3, down to Oxygen
- Single source if rapid ion change
- Two sources would allow mixed irradiation
- Energies down to 50 MeV/u
- Energies up to 440 MeV/u (after power converter upgrade)
- Higher energies (?)
- Cycle time of 4.8 s (4 basic periods)
- Slow extraction : $O(10^8 10^{10})$ ions per spill
- Energy change @ synchrotron (spill), and/or range shifter

BioLEIR facility outline

Frontend and Linac

Design the frontend for **optimal matching** between source and Linac


- Design of source output shaping
- Design of new beamline elements (RFQ)

Design of a **new light ion LINAC5**

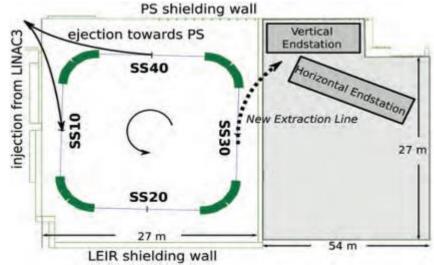
- Quasi-Alvarez DTL structure, optimized for q/m=1/3 and 1/4
- Shortened: Quad in every 3rd driftcell
- Use of PMQ

Opportunity to reuse LINAC2 area

Risk: Ageing Infrastructure

Interest from CNAO

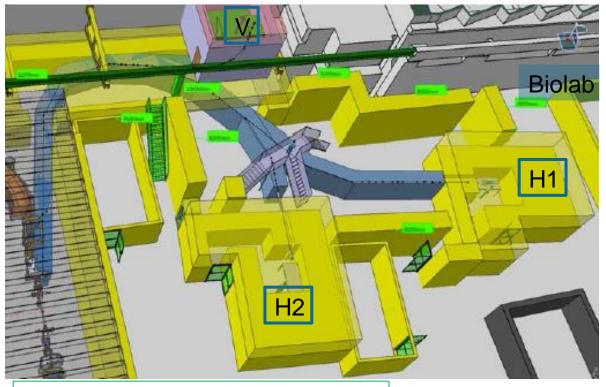
A. Lombardi, J. Garland, J-B. Lallement


LEIR synchrotron

Several aspects concerning LEIR need further, detailed beam dynamics studies:

- * Efficiency and stability of the injection system from LINAC3/5 to LEIR
- Intensity & stability for different ion species at energies up to 440 MeV/u & as low as 50 MeV/u
- Efficiency and stability of slow extraction system
- * Effect of electron cooling and/or solenoid on different light ions operation
- Efficiency and stability of the ejection system towards the PS with BioLEIR elements present
- Impact of BioLEIR devices on LHC beams

LEIR power converter upgrade


- Currently ion energy limitation beam rigidities limited to 4.8Tm: i.e. 246 MeV/u for Carbon ions
- Bending magnet design limit 6.7 Tm

Biomedical Experimental Area

- Local BioLEIR control/counting rooms (access/area control, beam on/off)
- Provide common instrumentation & sample/detector mounts

Collaboration with Oxford University, UK B. Jones, B. Vojnovic

Robotic placement system Provision for cell imaging

independent user access to irradiation areas

Extensive integration aspects (overhead crane, existing structures..)

BioLEIR Staging Scenarios

Stage 1 (2021, 2022)

- LINAC3 (Argon, Oxygen, Carbon?) + Extraction + 3 beamlines + Biolab
- LEIR energy 246 MeV/u max
- Dedicated running of BioLEIR possible for 4 months/year
- Switching time: weeks (or hours if Oxygen)

<u>Stage 2 (2023 -)</u>

- New Light Ion Frontend added: LINAC5 and source, full range of light ions accessible: protons to Oxygen
- * BioLEIR operation further uncoupled from LHC/NA heavy ion operation
- Beamtime: ~7 months w/ switching time of minutes

<u>Stage 3 (2024 -)</u>

Upgrade LEIR power converters for maximum energy up to 440MeV/u

Option: Interleaved operation

Possibility to further maximize beam time with transfer line (PPM) & injection septa upgrade

- **Controls complexity** of short common Linac4 & Linac5 transfer line
- Detailed cost-benefit analysis needed

NB

*

A delay in project start beyond mid-2017 means that LS2 window is missed (F BioLEIR start in 2026!!

10

Cost estimate – full facility

1100 7000		Ion source	_	
7000		ion source	7	
		LINAC5	23	
1800		Transferline to LEIR	8	
700		LEIR power converter upgrade	2	
		LEIR beam dynamics studies	5	
		Slow extraction	9	
		BioLEIR beamlines	21	
		Experimental area	2	
		Infrastructure	10	
		Vacuum	9	
		Radiation protection	4	
		Operations	2	
600		Controls system	5	
28700	30%	Safety system	1	
		Project management	11	
	700 1200 6100 800 5100 3600 400 300 600	700 1200 6100 800 5100 3600 400 300 600	700LEIR power converter upgrade1200LEIR beam dynamics studies6100Slow extraction800BioLEIR beamlines5100Experimental area3600Infrastructure400Radiation protection300Operations600Safety system	700LEIR power converter upgrade21200LEIR beam dynamics studies56100Slow extraction9800BioLEIR beamlines215100Experimental area23600Infrastructure10400Vacuum9400Radiation protection4300Operations2600Safety system52870030%Safety system1

Estimated cost of a "green-field" facility:

 Total [Person-Years]
 119
 10-15%

- Average construction cost ~140MCHF (without personnel cost)
- ~30% for clinical overhead
- Estimate to ~100 MCHF
- Significant cost saving through re-use of existing CERN infrastructure

11

Study Conclusions

- * Technical designs are found to be sound
- No technical showstopper identified
- Cost estimated at 29 MCHF, 120 person-years
- Earliest beam to BioLEIR possible in 2021
- Delivery in 3 stages with increasing capability and complexity
- ✤ Project start date > mid-2017 ☞ BioLEIR 2026!
- Optimization in next project stage
- Yellow Report: 180 pages with good level of detail
- https://doi.org/10.23731/CYRM-2017-001

