

LHC Workshop Berkeley

Workshop on Physics Opportunities with the First LHC Data 6-8 May 2009, Berkeley, CA, USA

Top quark pair production in di-leptonic decay channels at CMS

- Introduction:
 - Top Quark Production
 - CMS and Commissioning
- Observing Early Dileptonic tT
- Analyses @ 14 TeV:
 - 10pb⁻¹
 - 100pb⁻¹
 - eτ/μτ 100pb⁻¹
- Perspectives for 2009

Julien Caudron (julien.caudron@cern.ch)

University of Louvain
Center for Particle Physics
and Phenomenology

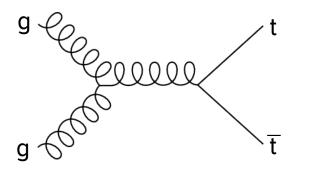
Top Quark

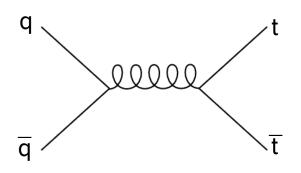
If the top quark is not observed at LHC, we cannot claim observing new processes

History:

- in top anti-top pair production (tT) (cf. next slide) observed at Tevatron in 1995
- in single top production (t-channel, s-channel, tW-channel) **observed at Tevatron in 2009** (arXiv:0903.0850, arXiv:0903.0885)

Motivations:


- It will be the first complex process (leptons, b-jets, MET) at LHC
 - → physics commissioning: used to calibrate the detector
 - performance of the detector: b-tag efficiency, JES
- Top quark physics: mass, spin, charge, V_{th}, ...
- It will be a background for other signals: Higgs, BSM, ...


Top Quark Pair Production

Production:

87% at LHC 15% at Tevatron

13% at LHC 85% at Tevatron LHC Tevatron

14TeV 10TeV

~900pb 414pb 7.6pb

Observed (Tevatron):

~20k evts at CDF (3fb-1)

~8k evts at D0 (1fb-1)

Predicted (LHC):

9M evts per year (10fb⁻¹ @ 14TeV) 80k evts in 2009-2010 run

(200pb⁻¹ at 10TeV)

Decay:

The top quark decays before hadronization

SM: t → Wb ≈ 100%

 $W \rightarrow qq': 68\%$ $W \rightarrow I\nu_{l}: 32\%$

→ hadronic: 44%

semi-leptonic: 45%

dileptonic: 11%

Dileptonic:

→ ee: 1.2%

eµ: 2.4%

μμ: 1.2%

ττ:1%

 $\tau I:5\%$

CMS and Commissioning

Pixels Tracker

ECAL HCAL

Muon dets

Solenoid

- The sub-detectors have to be aligned and calibrated.
- Reconstruction methods have to be controlled

Jet Energy Scale:

From semi-leptonic tT,

the W mass can be reconstructed.

Its well known value can be used

to adjust the JES.

Similarly, JES of b-jet can be performed using

the additional constrain on the top mass.

B-tagging efficiency:

Pure b-jet samples can be obtained from e μ , e+jet and μ +jet channels. b-tagging efficiency can be extracted

Alignment and calibration was (partially) performed in CRAFT and CRUZET

Dileptonic tT

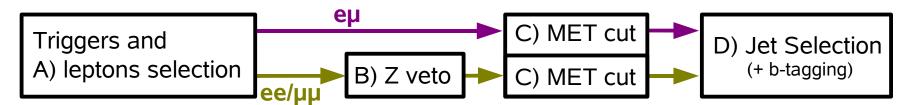
Dileptonic events: 2 high p_{τ} isolated opposite sign leptons, 2 b-jets and MET

- Clear signature
- Less affected by multi-jets backgrounds than semi-leptonic
 - → early observation
- Two neutrinos → not used to measure m_{ton} (semi-leptonic instead)
- Divided in leptonic channels:
 - eµ: clear channel, not contaminated by D.Y.
 - ee/μμ: complementary to the eμ channel
 - et/μτ: if τ → e/μ (35%), incorporated in ee/μμ/eμ channels if $\tau \rightarrow had$. (65%), tau-jet reconstructed (\rightarrow similar to semi-leptonic)

Main Backgrounds:

- Diboson, Drell-Yan (γ/Z^(*)+jets) (with 2 real isolated leptons)
- W+jets or semi-leptonic tT (with 1 real isolated leptons and a "fake" lepton*)
- Multi-jet QCD or fully hadronic tT (with 2 "fake" leptons*)

^{*&}quot;fake" leptons: from heavy flavor, in a jet, or not a real lepton


Early Dileptonic tT

Early Analyses:

- Robustness and simplicity → simple counting experiment
- Use of Mis-alignment and Mis-calibration (MisAICa) scenarios
- Data-driven methods needed to control backgrounds
- Some variables are not reliable at startup: MET, b-tag,... → loose/robust cut
- Complementary strategies (cross-check, robustness against failures, ...)

Schematic Cut Selections Steps:

Data Driven Background Estimation:

Large uncertainties on normalization of backgrounds (QCD, D.Y., W+Jets)

- Low jet multiplicity bins
- Control Region (i.e. for Z+Jets, inverting the Z veto)
- Fake Rate estimate (needed for QCD and W+jets)
- Template Fit or other methods

Early Dileptonic tT Observation

Cross-section extraction:

simple counting method:

$$\sigma_{\text{tT}} \times BR = \frac{N_{\text{sel}} - N_{\text{bkg}}}{\epsilon_{\text{tT}} \times \int \mathcal{L}}$$

$$\sigma_{\text{+T}}$$
: tT cross-section

BR: dileptonic branching ratio

 N_{sol} : events selected

 N_{bkq} : events estimated for the background

$$\begin{split} \boldsymbol{\epsilon}_{tT} &= \boldsymbol{\epsilon}^{\text{HLT}}_{\quad tT} \times \boldsymbol{\epsilon}^{\text{MC}}_{\quad tT} \times \boldsymbol{\epsilon}^{\text{reco/sel}}_{\quad tT} \\ \text{with } \boldsymbol{\epsilon}^{\text{HLT}}_{\quad tT} : \text{trigger eff. estimated from data} \\ \boldsymbol{\epsilon}^{\text{MC}}_{\quad tT} : \text{selection eff. estimated from MC} \\ \boldsymbol{\epsilon}^{\text{reco/sel}}_{\quad tT} : \text{corr. factor between MC and data} \\ \int \boldsymbol{\mathcal{L}} : \text{integrated luminosity} \end{split}$$

Systematics uncertainties:

- Experimental:
 - Leptons Reconstruction and Selection
 - Jet Energy Scale and Jet Energy Resolution
 - b-tag Efficiency and Mis-tag
- Theoretical:

PDF, ISR/FSR, Jet Multiplicity Spectrum, ...

- Background Normalization
- MC Statistics
- Luminosity
- Multiple pp collision

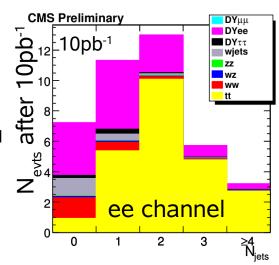
PAS: TOP-08-001

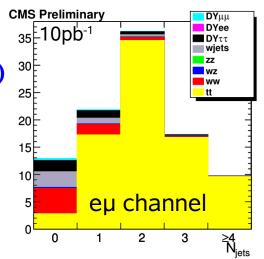
Cross-section after 10pb⁻¹, in ee/µµ/eµ channels

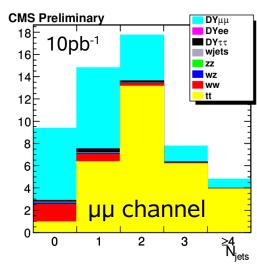
Early analysis:

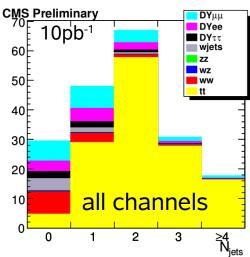
- MisAlCa startup scenario (expected mis-alignment and mis-calibration of the detector)
- Quality cuts on leptons are robust
- MET: not calibrated, but corrected with respect to muons not stringent cut Mis-measurement in D.Y. \rightarrow angle α between dilepton p_{τ} and MET vector
- No b-tagging
- A) Leptons selection: $p_T > 20$ GeV, $|\eta| < 2.4$
 - Quality cuts (leptonID, χ^2 /ndof, ...)
 - Isolation: $p_T / (p_T + S) > 0.92$ with $S = \sum p_T(tracks) + \sum E_T(calo)$ around the lepton ($\triangle R < 0.3$)
- **B)** Z-Veto: $|m_{\parallel} m_{\tau}| < 15$ GeV, for ee and $\mu\mu$ channel only
- C) MET cut: ee/µµ channel: MET >30 GeV eµ channel: MET >20 GeV MET >0.6× p_{T}^{II} OR α>0.25
- **D)** Jet Selection: >= 2 Jets with $E_{+} > 30$ GeV, Iterative Cone with radius 0.5

PAS: TOP-08-001


Results:


- >= 2 jets region quite pure, especially in the eµ channel
- Backgrounds:
 - D.Y.: main background in ee/μμ
 - W+jets: can be improved by quality cut on leptons
 - Diboson: small contribution
- Pure eµ channel, which can be used alone if backgrounds (D.Y.) or MET not correctly controlled


S/B= 7, S= 120 events (all channels) S/B= 25, S= 61 events (eµ channel)


Expected stat. error: 9% all channels 13% eµ channel

Syst. Error expected to be similar

PAS: TOP-08-002

Cross-section after 100pb⁻¹, in ee/µµ/eµ channels

Early analysis:

- MisAlCa 10pb⁻¹ scenario (based on cosmic muons, minimum bias and low mass resonances)
- Quality cuts on leptons are robust
- MET calibrated, corrected with respect to muons
- b-tagging: track counting algorithm, loose working point

```
A) Leptons selection: p_{\tau} > 20 \text{ GeV}, |\eta| < 2.4
```

- Quality cuts (leptonID, χ^2 /ndof, ...)
- Isolation: TrackIso(lept) < 3 GeV/c, sum in tracker/calo around the lepton ($\triangle R < 0.3$) Calolso(e) < 6 GeV,

Calolso(μ) < 1 GeV

 m_{\parallel} < 75 GeV OR m_{\parallel} > 105 GeV, for ee and $\mu\mu$ channel only B) Z-Veto:

C) MET cut: ee/µµ/eµ channel: MET >50 GeV

D) Jet Selection: >= 2 Jets with $E_{\tau} > 30$ GeV, Iterative Cone with radius 0.5 both jets are required to be b-jets

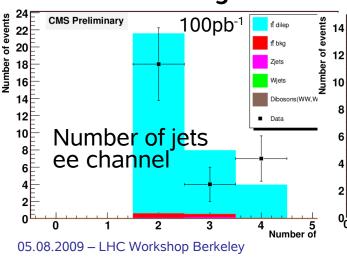
PAS: TOP-08-002

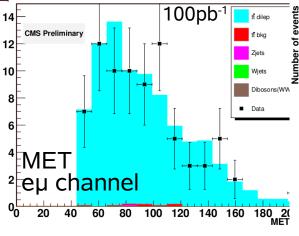
Results:

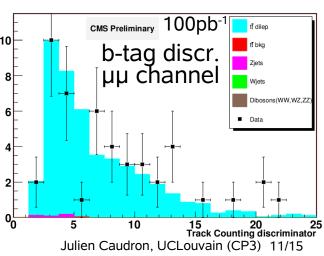
- More stringent cuts than 10pb⁻¹ analysis → better S/B
- Backgrounds:
 - ee channel mainly contaminated by fake leptons
 - μμ channel contaminated by Z+jets
 - eµ channel quite pure
- Heavy flavour sensitivity tested with enriched MC samples
- Matrix Method and Factorization used to evaluate backgrounds

S/B= 26, S= 32 events (ee channel)

S/B> 90, S= 84 events (eµ channel)


S/B> 90, S= 45 events (µµ channel)


S/B without b-tag: ee: 4, e μ : >20, $\mu\mu$: 6


Expected stat. error:

ee: 15%, μμ: 18%, eμ: 11%

all channels: 8%

eτ/μτ 100/pb @ 14 TeV

PAS: TOP-08-004

Cross-section ratio $\sigma[t\overline{t} \rightarrow (l\nu)(\tau\nu)b\overline{b}] / \sigma[t\overline{t} \rightarrow (l\nu)(l\nu)b\overline{b}]$ after 100pb⁻¹ $(l=e,\mu)$ **Early analysis:**

- MisAlCa 10pb⁻¹ scenario
- Quality cuts on leptons are robust
- MET calibrated, corrected with respect to muons
- 10% variation on the tau reconstruction algorithm parameters to evaluate syst.
- different b-tagging scenarios considered

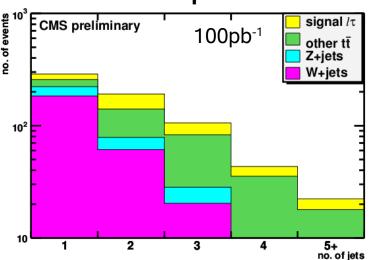
```
A) Leptons selection: p_T > 20 \text{ GeV}, |\eta| < 2.4
```

- Quality cuts for tau-jet
- Isolation: TrackIso(lept) < 3 GeV/c, sum in tracker/calo around the lepton ($\triangle R < 0.3$) Calolso(e) < 6 GeV,
 - Calolso(μ) < 5 GeV
- other leptons veto

C) MET cut: eτ/μτ channel: MET >60 GeV

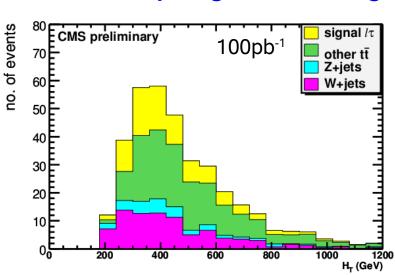
D) Jet Selection: >= 2 Jets with $E_{+} > 30$ GeV, Iterative Cone with radius 0.5

eτ/μτ 100/pb @ 14 TeV



PAS: TOP-08-004

Results:


• R = $\sigma^{l\tau}$ / $\sigma^{e\mu}$ can be computed, in order to evaluate deviation w.r.t. SM. The syst. uncertainties cancel in this ratio. The pure e μ channel is used as normalization

- Backgrounds:
 - W+jets: main non-tT background, but can be derived from data
 - Other tT: mainly semi-leptonic
- Fake Rate for tau-jet can be evaluated in jet dominated samples

without b-tag: S/B= 0.4, S= 86 events (1-prong) b-tag increase S/B by 2

Expected stat. error: 1-prong without b-tag: ~10%

Perspectives for 2009

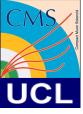
The results presented here were released 1 year ago

Possible scenarios:

- 10 TeV instead of 14 TeV
- One dileptonic note for three dileptonic tT studies:
 - standard analysis after 10/pb @ 10 TeV
 - track-based analysis after 10/pb @ 10 TeV
 - standard analysis after 100/pb @ 10 TeV
- MisAlCa scenario = Ideal scenario (thanks to cosmic data)
- Improved data-driven methods:
 - Z+Jets: "In/Out Z-peak" at 10/pb, Template Fit at 100/pb
 - Fake Rate estimation
 - Matrix Method for QCD at 100/pb

next: theoretical uncert., Top Commissioning, ...

Conclusions

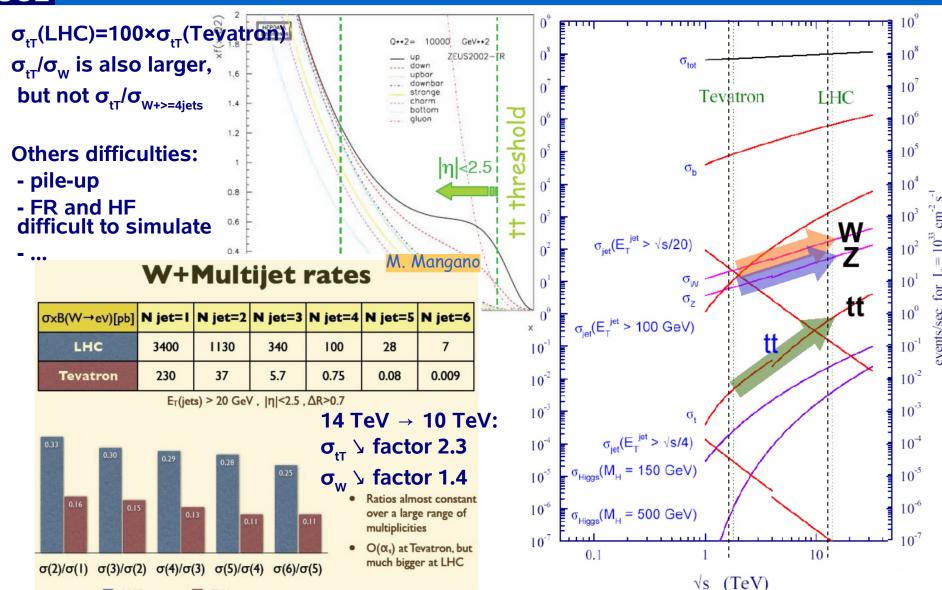

The di-leptonic top pair production will be observable at CMS after few tens pb⁻¹ of integrated luminosity

Early observations can be performed in complementary and robust way:

- after 10pb⁻¹, without b-tagging backup scenario (eµ channel only) without MET
- after 100pb⁻¹, with loose working point b-tagging
- after 100pb⁻¹, in the et and μt channel

Early tT observation at LHC:

- First complex SM process at LHC energies
 - → understanding and calibration of the detector
- Observation of a background in many signals
- First step to the Top Quark Physics program at LHC (top physics, BSM, ...)

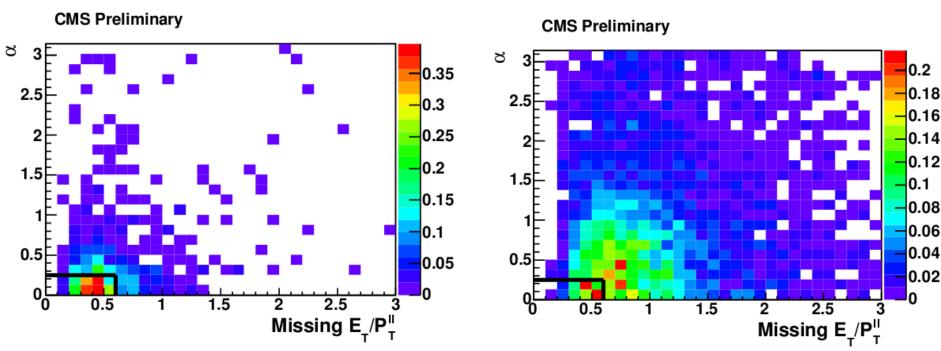


BACKUP SLIDES

Tevatron → LHC

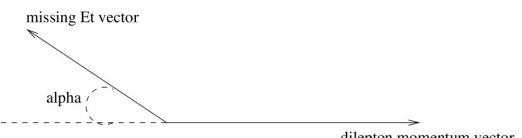
LHC

14TeV:


process	MC Generator	Assumed Cross Section	
$t\bar{t}$	Alpgen	837 pb	
W+jets	Alpgen	65.2 nb	
DY+jets	Alpgen	6.46 nb	
WW	Pythia	114.3 pb	
WZ	Pythia	49.9 pb	
ZZ	Pythia	16.1 pb	

10TeV:

process	MC Generator	Cross Section
tī	Madgraph	414 pb
W + jets	Madgraph	46 nb
DY+jets	Madgraph+Pythia*	6.6 nb
$WW \rightarrow 2\ell 2\nu$	Pythia	7.2 pb
WW \\	Pythia	74 pb
WZ \	Pythia	29 pb
$ZZ \rightarrow 2\ell 2\nu$	Pythia	0.41 pb
$ZZ ightarrow 4\ell$	Pythia	0.135 pb
ZZ	Pythia	10.4 pb
tW	Pythia	38.2 pb
$pp \rightarrow \mu + X$	Pythia	122 nb
$pp \rightarrow (b, c \rightarrow e) + 2$	X Pythia	455 nb
$pp \rightarrow em + X$	Pythia	8185 nb



ee/µµ channel:

- MET >30 GeV

- MET >0.6× $p_{T}^{"}$ OR α >0.25

dilepton momentum vector

Data-driven Method: Fake Rate

A: Fakes not selected B: Fakes selected C: Not fakes

Fake Rate = Selected Objects / Fakeable Objects = B+C / A+B+C with FO is all object passing loose isolation conditions

FR will be computed from data (triggered in an other object)

 N_{ED} = Events with 1 FO passing the standard conditions 1 FO failing the standard conditions

$$N_{\text{estimated}} = N_{\text{FR}} \times FR/(1-FR)$$

But the "not fakes" are supposed to have 100% efficiency under standard conditions → overestimation MC tests show that this overestimation is small (~ 1% of N_{estimated})

Ways to estimate this bias from data are also proposed, in measuring FR on clean "not fake" leptons region, in general Z→II

Data-driven Method: Matrix Method

Matrix Method:

Three kinds of backgrounds: Signal-like, 2 good leptons (S)

W+jets-like, 1 fake lepton (W)

QCD-like, 2 fakes (QCD)

Three kinds of selections: Tight (t), standard isolation for both leptons

Medium (m), at least one lepton pass the standard iso.

Loose (I), relaxed isolation

$$N^{t} = N^{t}_{S} + N^{t}_{W} + N^{t}_{QCD}$$

$$N^{m} = N^{m}_{S} + N^{m}_{W} + N^{m}_{QCD}$$

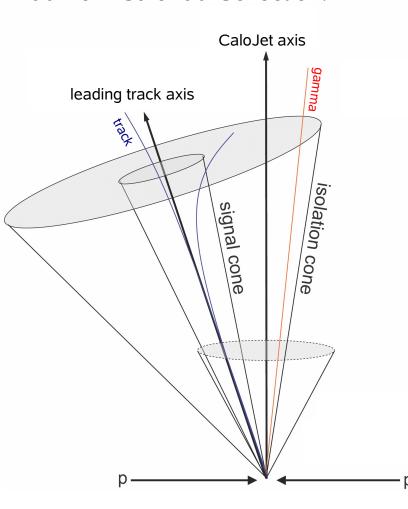
$$N^{l} = N^{l}_{S} + N^{l}_{W} + N^{l}_{QCD}$$

$$egin{aligned} arepsilon_S^{l o t} &= arepsilon_s^2, \ arepsilon_W^{l o t} &= arepsilon_s.arepsilon_{fake}, \ arepsilon_{QCD}^{l o t} &= arepsilon_f^2 - arepsilon_f^2 \ arepsilon_S^{l o m} &= 2arepsilon_s - arepsilon_s^2 \ arepsilon_W^{l o m} &= arepsilon_s + arepsilon_{fake} - arepsilon_s.arepsilon_{fake} \ arepsilon_{QCD}^{l o m} &= 2arepsilon_{fake} - arepsilon_f^2 - arepsilon_f^2 \ arepsilon_f^2 &= 2arepsilon_{fake} - arepsilon_f^2 - arepsilon_f^2$$

but
$$N_{i}^{t} = \varepsilon^{l \to t} N_{i}^{l}$$

 $N_{i}^{m} = \varepsilon^{l \to m} N_{i}^{l}$
and $\varepsilon^{l \to \{m,t\}}$ can be evaluated
by factorization approach

$$\begin{split} N_S^l &= \frac{N^t - \varepsilon_{fake}(N^m + N^t - \varepsilon_{fake}N^l)}{(\varepsilon_s - \varepsilon_{fake})^2}, \\ N_W^l &= \frac{(\varepsilon_s + \varepsilon_{fake})(N^m + N^t) - 2(N^t + \varepsilon_s\varepsilon_{fake}N^l)}{(\varepsilon_s - \varepsilon_{fake})^2}, \\ N_{QCD}^l &= \frac{N^t - \varepsilon_s(N^m + N^t - \varepsilon_sN^l)}{(\varepsilon_s - \varepsilon_{fake})^2}. \end{split}$$



Tau

PAS: TOP-08-004

Tau from CaloTau Collection:

- leading track $p_{T} > 5$ around the jet axis ($\Delta R = 0.1$)
- 0 tracks in an isolation annulus (0.1< ΔR <0.5)
- Electron veto: $E_{tot}/p_{leading track} < 0.9$
- Muon veto: $E_{tot}/p_{leading track} > 0.5$
- "crack" region removal (1.46 < |η| < 1.56)
- E_{ecal} < 3 GeV in ΔR <0.5
- -Veto tested by reversing the electron rejection cut (pure Z→ee sample)
- The dilepton invariant mass is reconstructed for "all" and "e reversed". Similar method for muons
- -Fake probability evaluated in sub-samples of QCD: "leading", "next-to-leading" and "back-to-back" jets Can be evaluated from Data in OS and SS samples