Early Physics in LHCb

Tomasz Skwarnicki
Representing LHCb collaboration
LHCb Detector

- Looks at pp collisions at LHC in a unique way

- **Forward acceptance:**
 - Optimal for $b\bar{b}$ physics, affordable
 - Will complement the central detectors in studies of hadronic physics in early stages of LHC
Design luminosity

- LHCb design luminosity is much smaller than the LHC design luminosity of 10^{34} cm$^{-2}$s$^{-1}$:
 - Smaller occupancies, less confusion
 - Little pile-up ($n=0.5$)
 - Less radiation damage
 - Nominal design luminosity is 2×10^{32} cm$^{-2}$s$^{-1}$
 - Detector can withstand up to 5×10^{32} cm$^{-2}$s$^{-1}$ (beams will be defocused to prevent further increase in instantaneous luminosity) but only channels with muons benefit from the increase

- LHC 2010 run will approach optimal running conditions for LHCb

- After a few years of running LHCb physics reach will saturate
- LHCb detector upgrade plan for 2015:
 - Rebuilt the detector to operate at luminosities up to 2×10^{33} cm$^{-2}$s$^{-1}$
Vertex detector (VELO)

- **Long vertex detector, very close to the beam:**
 - Forward particle momenta minimize multiple scattering effects
 - Excellent impact parameter (~30 μm) and decay time resolutions (~40 fs)
 - Designed for beauty and charm detection:
 - triggering, background suppression and measurement of time dependent CP-asymmetries
 - In very early LHC phases it will aid production studies of strange V0s ($K^0_s \to \pi\pi$, $\Lambda \to p\pi$)
 - Unique sensitivity to NP particles decaying to bb with long lifetime
Tracking system

- Good momentum (0.35-0.5%) and mass resolution (~15 MeV for B)
Hadron identification

- **Good $\pi/K/p$ separation is a unique feature compared to central detectors:**
 - Important for background suppression in B and D reconstruction and for **flavor tagging**: $\varepsilon D^2 \sim 6\% (4\%)$ for $B_s (B_d)$
 - Inclusive charged hadron spectra from early data

![Diagram of RICH1 and RICH2](image)

![Plot of Kaon identification performance](image)

- $K \rightarrow K$, $Pr: 97.29 \pm 0.06 \%$
- $\pi \rightarrow K$, $Pr: 5.15 \pm 0.02 \%$
Muon detector, calorimeters and L0 trigger

L0 hardware trigger (customs boards) with 4 μs latency (40MHz→1MHz):

- Extrapolation through the magnet to the interaction region gives μ momentum in L0

- Muon detector:
 - Low reconstruction thresholds in offline and trigger: p>3 GeV, p_t>0.5 GeV
 - Single- and di-muon triggers: p_{t1} + (p_{t2}) >~1.3 GeV

- HCAL:
 - triggering on purely hadronic B decays: E_t > ~3.6 GeV

- ECAL:
 - triggering on electrons and photons: E_t > ~2.7 GeV
 - Offline electron ID, photon and π⁰ reconstruction (\(\sigma(E)/E \sim 8.2% /\sqrt{E} + 0.9% \))

- Minimum bias trigger in early running based on total energy in calorimeters
HLT trigger

Online computer farm.

- **Early running:**
 - Write data out at nominal frequency:
 - Offline data processing assumes ~2kHz but we can actually log data at higher rates (event size ~35 kB)
 - Tighten trigger criteria with increasing luminosity
 - Muon triggers provide safe fall back strategy

- **HLT1:** 1MHz → 30kHz
 - Confirm L0 seeds with tracking detector hits/tracks
 - Improve \(p_t \) determination.
 - Reconstruct primary vertices.
 - Optionally add Impact Parameter cuts
 - Add companion tracks for secondary vertex cuts

- **HLT2:** 30MHz → 2kHz
 - Full event reconstruction.
 - Inclusive and exclusive physics selections.
Commissioning

Muons reconstructed in VELO from beam stop during injection tests on August 24, 2008

• Detector is installed and ready for data
First Measurements

- Late 2009/early 2010
- Inelastic collision rate reaches our event logging rate (~2kHz) already at luminosity of ~4x10^{28} cm^{-2}s^{-1}
- Use minimum bias trigger \(\frac{\sigma}{\sigma_{mb}} \)
- ~10^8 events in a day
- Detector calibration and alignment
- Physics of minimum bias interactions, tuning of MC generators

Physics reach vs accumulated minimum bias statistics
Example: Strange baryon production

- **Strangeness is a good probe for fragmentation processes:**
 - Created in fragmentation
 - Heavier, but not too heavy s-quark mass
- **Existing minimum bias/underlying event models tuned to CDF/D0 data (central region, higher p_t):**
 - Need also measurements in forward region and lower p_t to distinguish different models at LHC – LHCb is well suited for this!
- **Transport of beam baryon number can distinguish different models of color flow:**
 - Strange baryon / anti-baryon asymmetries
 - Effects are larger closer to the beam: larger η smaller p_t – LHCb!
Λ/Λ ratio vs η

LHC 10 TeV

Inelastic, Non-Diffractive

Λ^0bar / Λ^0 η Distribution (generator-level)

- Perugia 0
- Pro-pT0
- DW-Pro
- A

Pythia 6.420

- **ATLAS/CMS ~1% effect**
- **LHCb ~5% effect**

Older models:
- Baryon number locked in the beam remnant

Newer models:
- Baryon number “liberated” via different multi-parton dynamics

- From Peter Skands:
$\Lambda / \bar{\Lambda}$ ratio with LHCb

Cuts: DoCA ≤ 0.3 mm, $ct \geq 4$ mm, $IP \leq 0.1$ mm, $p_{t,\text{wrt mother}} \geq 10$ MeV (no PID cuts)

- MC: $\sim 10^7$ minimum bias events
\(\frac{\Lambda}{\Lambda} \) ratio with LHCb

- With \(10^8\) minimum bias events expect statistical errors of \(~1.3\%\) per bin
- We will be able to distinguish between the old and new MPI models

MC: \(~10^7\) min.bias events

See talk by Markward Britsch at DIS 2009, 26-30 April 2009, Madrid
D/D ratios with LHCb

- Geometric and kinematic cuts only (no PID used)
- For $1.8<\eta<3.5$ with 10^8 minimum bias events expect:
 - ~5% error on $\overline{D^0}/D^0$
 - ~6% error on D^-/D^+

MC: ~10^7 min. bias events
Early running with loose muon trigger

- **Spring 2010, ~5 pb\(^{-1}\)**
- **Use lifetime unbiased single muon trigger with \(p_t > 1\) GeV**
- **Clean J/\(\psi\)\(\rightarrow\)\(\mu\mu\) signal without biasing the 2\(^{nd}\) muon:**
 - Can study trigger and muon identification efficiencies
- **Physics with J/\(\psi\):**
 - **Prompt** production studies, including polarization:
 \(\sigma_{\text{prompt}} \approx 3100\) nb with both muons in \(2.5<\eta<5.5\)
 - \(b\bar{b}\) cross-section via \(b\rightarrow J/\psi\ X\): \(\sigma_{b \rightarrow J/\psi} \approx 240\) nb (7%)
 - Other charmonium states via decays to J/\(\psi\)

(Wenbin Qian who was supposed to report on J/\(\psi\) studies at this workshop did not receive US visa on time)
J/ψ production studies

MC: ~2x10^7 minimum bias events

- **Selection:**
 - 1 primary vertex
 - 2 identified muons, forming a common vertex
 - 1 muon with p_t > 1.5 GeV

- **Expect ~2.1x10^6 events in 5 pb^-1 at 8 TeV**
- **Mass resolution ~11 MeV**
- **S/B~4** (background dominated by decays in flight)

- **Use fit to proper time distribution to disentangle prompt and b components**
J/ψ production studies

- We will measure prompt J/ψ and b̅b cross section in a region not accessible to other collider experiments.
χc production studies

- At Tevatron \(\sim 30\%\) of J/ψ come from \(\chi_{c1,2} \rightarrow \gamma J/ψ\).
- Model builders interested in measurements of \(\sigma(\chi_{c2})/\sigma(\chi_{c1})\).

Mass resolution is \(\sim 27\) MeV

\(M(\chi_{c2}) - M(\chi_{c1}) = 55\) MeV

Some sensitivity to \(\sigma(\chi_{c2})/\sigma(\chi_{c1})\)
Other charmonium/bottomonium studies

- \(\psi(2S) \rightarrow \pi\pi J/\psi \) production
 - measure \(\sigma(\psi(2S))/\sigma(J/\psi) \)
 - polarization

- \(X(3872) \rightarrow \pi\pi J/\psi \)
 - CDF has the world largest sample
 - About \(\sim 20\% \) from \(B \rightarrow X(3872) \) \(K \)
 - Especially useful for \(J^{PC} \) determination (1\(^{++} \) or 2\(^{-+} \)?) because of known polarization
 - Advantages of LHCb:
 - Higher cross-section. Kaon ID.

- \(B \rightarrow Z(4430)^+ K, Z(4430)^+ \rightarrow \psi(2S) \pi^+ \)

- Production and polarization of \(\Upsilon \rightarrow \mu\mu \)
 (~37 MeV mass resolution)

- \(\Upsilon(nS) \rightarrow \pi\pi \Upsilon \), including possible \(Y_b(10890) \) hybrid state
Drell-Yan at low-x

- LHCb has unique coverage in η reaching towards low-x
- LHCb muon reconstruction and trigger thresholds are low:
 - Reconstruction:
 - $p > 3\text{GeV}$, $p_t > 0.5 \text{GeV}$
 - Prompt di-muon trigger:
 - $p_{t1} + p_{t2} > 1.5 \text{GeV}$,
 - $M_{\mu\mu} > 2.5 \text{GeV}$
 - no IP cuts
- LHCb will provide unique constraints on PDFs

$x_{1,2} = M_{\mu\mu} \exp(\pm \eta) / \sqrt{s}$
Drell-Yan at low-x

After all cuts

- Signal
- HQ decays
- Mis-id

<table>
<thead>
<tr>
<th>Mass range (GeV)</th>
<th>Events/pb-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.5 < M_{\mu\mu} < 5$</td>
<td>119.1 ± 1.0</td>
</tr>
<tr>
<td>$5 < M_{\mu\mu} < 10$</td>
<td>287.3 ± 1.6</td>
</tr>
<tr>
<td>$10 < M_{\mu\mu} < 20$</td>
<td>147.6 ± 0.9</td>
</tr>
<tr>
<td>$20 < M_{\mu\mu} < 40$</td>
<td>42.3 ± 0.4</td>
</tr>
</tbody>
</table>

- See Jonathan Anderson talk at DIS 2009, 26-30 April 2009, Madrid
Drell-Yan at low-x

- Substantial constraints at low-x (down to $\sim 1.5 \times 10^{-6}$)
Early B physics results

• Early analyses, even though interesting in their own right, are stepping stones for B physics program

• Best world measurements in many important B decay channels can be obtained even with as little as 200 pb$^{-1}$

• **Late 2010**: as luminosity increases, muon triggers will be tightened while continuing to commission hadronic and e,γ triggers

• Show two examples for B_s results relying on muon triggers only (see next)

• First measurements of angle γ relying on hadronic triggers are also likely
Measurement of ϕ_s

- Phase of B_s^{-}-\bar{B}_s oscillations
- Very small in SM. Sensitive to NP contributions.
- $B_s \rightarrow J/\psi \phi$
 - Simultaneous fit of CP asymmetry to time and angular distributions (to disentangle CP-odd and -even amplitudes)
- At present CDF+D0 results $\sim 2.2\sigma$ away from SM prediction
- LHCb has much better sensitivity:
 - Large signal yield ($13k/200 \text{ pb}^{-1}$), excellent time resolution ($\sim 40 \text{ fs}$) and flavor tagging ($\sim 6\%$)

200 pb$^{-1}$
BR(B_s → μμ)

- Very small in SM. Sensitive to NP contributions.
- LHCb exploits high cross-section, high trigger efficiency, good mass resolution (~18 MeV) and vertexing, and good muon ID.
- Background from two semileptonic b decays

![Graph showing BR(B_s^0 → μ^+μ^-) vs. L (fb^{-1})](image)

Standard Model:

![Standard Model Feynman diagram](image)

SUSY (MSSM):

![SUSY (MSSM) Feynman diagram](image)

90% C.L. exclusion limits at 8 TeV CM

\[\sim \tan^6 \beta \]

Could be strongly enhanced.
Hidden Valley NP

- Hidden Valley models:
 - Predict light new particles, hidden from us at existing accelerators, since their production goes via heavy intermediate particles
 - LHCb has unique capabilities for detection of anything decaying to $b\bar{b}$, even with a substantial lifetime (hundreds of ps).

For favorable model parameters LHCb could observe a few hundred events in 200pb^{-1} with small background if $m_h \sim 120$ GeV
Conclusions

• With 10^8 minimum bias events (1 day of running with minimum bias trigger at low luminosity) LHCb will do interesting measurements testing theoretical models:
 – Complementary to ATLAS/CMS since at larger η and lower p_t
 – Strange particles ratios in forward region will distinguish old and new fragmentation models

• With 5-10 pb$^{-1}$ and muon triggers
 – J/ψ production studies in forward region:
 • Prompt and b- production
 • Measurements of $b\bar{b}$ cross-section
 • Heavier charmonium states including exotics
 – Meaningful constraints on PDFs at low-x from Drell-Yan at low Q^2

• With 200 pb$^{-1}$ first results from rare B decays. LHCb will take over Tevatron in B_s physics:
 – Will the disagreement with SM in ϕ_s deepen or ease up?
 – Any hints of NP in $\text{BR}(B_s \to \mu\mu)$?