Trigger Strategies and Early Physics at CMS

Christoph Paus, MIT

Berkeley Workshop on Physics Opportunities with Early LHC Data Berkeley, May 6-8, 2009

Outline

Introduction of experimental setup

- accelerator: LHC
- detector: CMS
- starting up
- **Trigger Strategies**
 - general architecture
 - trigger primitives
 - basic and more elaborated trigger tables

Early physics opportunities

- electroweak, top
- Higgs
- non Standard Model stuff

LHC Startup Schedule

Overview

- first beam in September, first collisions end of September
- 450 GeV beam energy 'runlet' very likely
- moving up soon to beam energies as high as 5 TeV
- plan to deliver ~200 pb⁻¹ of integrated luminosity
- within roughly 9-10 month (follows 9 month break)

LHC Run Plan 2009/10

Luminosity profile (gu)estimations

- determine relevance of pile up events: mild pileup
- prepare tuning of trigger setups

Month	No. Bunches	Protons per bunch	β* [m]	% Nom	Peak luminosity cm-2s-1	Integrated luminosity	
1	Beam Commissioning						
2	43	3 x 10 ¹⁰	4	0.4	1.2 x 10 ³⁰	100 – 200 nb ⁻¹	
3	43	5 x 10 ¹⁰	4	0.7	3.4 x 10 ³⁰	~2 pb ⁻¹	
4	156	5 x 10 ¹⁰	2	2.5	2.5 x 10 ³¹	~13 pb ⁻¹	
5	156	7 x 10 ¹⁰	2	3.3	4.9 x 10 ³¹	~25 pb ⁻¹	
6	720	3 x 10 ¹⁰	2	6.7	4.0 x 10 ³¹	~21 pb ⁻¹	
7	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹	
8	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹	
9	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹	From
10	lons						R.Bailey,
Total						→ 200 – 300 pb ⁻¹	Oxford IoP
careful: delivered lumi != lumi usable for physics							

CMS – Compact Muon Solenoid

General overview

- detector was ready to take data in September 2008
- ... and it still will be for September 2009
- see N.Bacchetta yesterday: 'CMS Detector Performance for 09/10'

Physics Overview

Physics processes

- production relative to σ_{tot} : *bb* at 10⁻³, $W \rightarrow \ell v$ at 10⁻⁶ and *Higgs*(m=100 GeV) at ~10⁻¹¹
- 32 MHz beam crossing, only about 300 Hz tape writing: 1/10⁵
- fast and sophisticated selection process essential: trigger

Trigger

- complete trigger has to work: otherwise no useful data registered
- already in first data taking: rate enormous and trigger important
- core trigger organization: use electron, muon, jet and energy signatures

C.Paus, MIT: Trigger Strategies and Early Physics at CMS

for same sensitivity

CMS Trigger - Overview

Traditional HEP trigger systems

- organized in levels: level-1, level-2, level-3
- increasing amount of data and time to analyze
- level-1: custom boards, level-2: programmable logic chips, level-3: computing farm running fast reconstruction
- CMS follows pattern generally but level-2 and level-3 merged into High Level Trigger (HLT)

Trigger concepts

- level-1 primitives: muons, electrons, calorimeter energies
- confirm, refine, combine and extend in HLT
- exactly defined trigger path: level-1 + HLT (exact path)
- avoid volunteers
 - facilitates analysis: efficiency for defined path only
 - eases trigger table design and adaptation to data taking conditions

Level-1 Data Flow

Calorimeters and muon detector based • enough for electron, muon, jets and missing E_{τ}

Tracker not included

- no level-1 possibility of displaced track trigger
- limits purely hadronic c/b hadron decays
- and enrichment of hadronically decaying heavy flavor jets

Track trigger planned for upgrade

HLT Data Flow

HLT internal structure

- level-2
 - unpack muon, ecal, hcal data
 - based on level1 seeds perform local reconstruction
 - apply level-2 algorithms and filter
- level-3
 - unpack tracker locally (mostly pixel)
 - perform local reconstruction based on level-2 results
 - apply level-3 algorithms and filter
- send accepted events to storage

C.Paus, MIT: Trigger Strategies and Early Physics at CMS

Event Builder/HLT Primitives

- RU Readout Unit
- BU Builder Unit
- FU Filter Unit
- SM Storage Manager

Trigger – Practical Considerations 1

Triggering 101

- clean, simple and robust pattern
- muons are best: A+
 - rely on muon detectors
 - there are just very few of them
 - and there is little background
- electrons/photons are not so bad either: A-
 - rely on ECAL: fast and precise energy
 - EM shower contained, no HCAL deposition
 - though there are many calorimeter towers
- general large energy triggers: **B**
 - there are tons of events, but adjusting threshold should work
- missing energy: C
 - ideally there are few, but
 - measuring to little or too much can get you in trouble quickly
 - needs lots of work until properly working

Trigger – Practical Considerations 2

Trigger table design

- inclusive triggers
 - for a wide variety of applications
 - typically single trigger primitive: isolated muon, loose electron,
 - usually have high rate, control rates:
 - request minimum momentum (threshold)
 - pre-scale trigger (loosing good events)
 - use two objects of same type, ex. two isolated muons (less general of course)

- efficiencies: backup triggers, auto accept events
- exclusive triggers
 - more specific for a particular type of physics
 - typically more complex combinations of primitives: non isolated muon and 4 jets
 - usually have low rate

Understanding the Detector

Commissioning detector

- cosmic data taking with magnet on (3.8 T)
- running with special trigger and readout conditions
- but no beam or collisions
- excellent results \rightarrow expect well functioning CMS detector

Adding beams and collisions

- high detector read out rate
- dense particle presence from collisions
- beam related particle spray
- various new challenges
 - occupancy as expected?
 - do reconstruction algorithms work as advertised?
 - is trigger rate manageable? is data size manageable?
 - find calibration samples before relying too much on Monte Carlo!

Understanding the Detector

Carefully design program to understand detector

- trigger has to work otherwise no events to study
- any triggered data useful: even at 450 GeV beam energy
 - low energies take out pressure to discover new physics
 - focus on detector: where did that large MET come from?
- use of standard candles essential: large samples
 - pi0, conversions, *J/psi*, *Upsilon*, *W*, *Z*
 - sideband subtraction allows very clean studies: muons, electrons and photons – our analysis primitives
- measure standard candles and publish: ultimate detector understanding is achieved through publication
- what makes CMS different from Tevatron detectors?
 - tracker 10 x more material, innermost pixel, less hits per track
 - ECAL crystal calorimeter excellent resolution
 - HCAL depth should be fine

• muon system – well protected by calorimeters, excellent resolution C.Paus, MIT: Trigger Strategies and Early Physics at CMS

Something to keep in mind

- new physics channel already open at Tevatron will need to wait: Tevatron has no signal but has sufficient data
- physics channels just opening beyond the Tevatron are a possibility, little data == first LHC year could be enough
- be ready for the obvious candidates, but do not be disappointed when we do not see anything right away

My personal bet of what will happen

- first year dedicated to understanding detector/trigger
- .. and publishing bread and butter measurements

MinBias events come first and in large quantities

- measure charge multiplicity and track p_{τ} spectrum
- one of the first measurements, probably
- provides normalization for Heavy Ion collisions
- low momentum tracking needed: tracks curve a lot at ~ 4T

C.Paus, MIT: Trigger Strategies and Early Physics at CMS

MinBias events continued

- *p_τ* spectrum covers a good range for |eta| up to 2.3
- measurement quickly systematics limited
- low momentum better covered than initially anticipated

For the high p_{τ} aficionados

- MinimumBias events make up the pileup
- precise understanding will help all of us

Luminosity measurement

- relative luminosity measured in HF (3.0<|eta|<5.0)
- overall normalization through various possibilities
 - using LHC measurements or Totem
 - two-photon to di-muons, W/Z production etc.

Early Physics – B Physics

Heavy flavor physics: J/psi as tool

- prompt production: charmonium cross section
 - Upsilon production similarly interesting
- analysis at 14 TeV predicts 70k events for only 3 pb⁻¹

Early Physics – B Physics

Heavy flavor physics: J/psi as tool

- background for prompt production is another signal
- secondary production
 - measure inclusive b production cross section
 - measure *bb* correlations

Early Physics - Electroweak

- How many single boson events per 200 pb⁻¹?
 - ℓ = electron, muon
 - $W \rightarrow \ell_V$: 4M events
 - $Z \rightarrow \ell \ell$: 0.4M events
 - precise cross section possible and study of W/Z + jets
 - of course luminosity needs to be provided

Diboson processes will be marginal with 200 pb⁻¹

- WW enough to observe it
- WZ might be just visible
- ZZ needs more luminosity

Early Physics - Electroweak

$Z \rightarrow \ell \ell$ analysis

- relies purely on leptons \rightarrow straight forward
- study ground for $W \rightarrow \ell v$
- $W \rightarrow \ell v$ analysis
 - complication: missing energy from neutrino
 - large sample allow detailed studies to commission missing E_{τ} and lepton Id
 - understand fake leptons

see also talk by Phil Harris, later today

Early Physics - Top

Top quark

- a new and rare particle at the Tevatron
- ... a clean standard candle at the LHC

Ken Bloom (Nebraska) calls it a 'candelabra', but that is just another story.

What has changed?

- production 90% through gluon-gluon
- larger boost
- Includes basic objects
- leptons
- b quarks
- missing energy
- jets

see talk by Julien Caudron, later today

C.Paus, MIT: Trigger Strategies and Early Physics at CMS

100 pb⁻¹ at 14 TeV in electron-muon channel

Early Physics - Higgs

- Clearly, not enough events to see a SM Higgs signal
- **General comments**
- *H*→*WW* at *WW* threshold equivalent with Tevatron reach
- analysis complex and unlikely matured in such short time
- picture: 14 TeV, 1 fb⁻¹
- please scale accordingly.... First 95% CL exclusion?
- maybe we get lucky

see also talk by Joanna Weng, later today

Early Physics - BSM

Most promising new physics

- search will follow our understanding of the various quantities: starting from leptons and photons
- SUSY
 - has of course exciting and very large signal channels visible even with 200 pb⁻¹
 - CMS will cover the phase space (leptons/photons first)
- next generation bosons
 - once Z and W analyses are done, just open the mass window: check for Z', W'
 - some work needed because background changes for very high momentum leptons, as well as the lepton Id itself
- of course more signatures are interesting including missing energy, taus, jets

Conclusion

CMS Trigger strategies

- high priority: bad trigger leads to no or too few good data
- two stage system: Level-1 and High Level Trigger
- robust trigger primitives, very flexible to combine them
- inclusive triggers combined with specific exclusive ones
- pre-scaling possible to adjust rates to luminosity

Early physics with CMS

- intense phase of detector and trigger commissioning results in a large number of *bread and butter* publications
 - track multiplicity, jet cross section, W/Z production, top...
- of course all possible new physics channels are being carefully monitored.... we all hope for an exciting start
- keep a watch also for the unexpected!