Latest results from Double Chooz experiment with two detectors

Neutrino Frontier Workshop 2016 @ Kaga 28 November 2016

Tsunayuki Matsubara (Tokyo Metropolitan University)

Why θ_{13} with reactor ν ?

Toward global understanding of neutrino oscillation:

- CP violation (-1 < $\sin \delta_{CP}$ < 1)
- Mass hierarchy $(\Delta m^2_{32} > 0 \text{ or } \Delta m^2_{32} < 0)$

• Octant of θ_{23} ($\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$)

Measurement by $\nu_{\mu} \rightarrow \nu_{e}$ oscillation has parameter dependences w/ θ_{13}

From F. Suekane's talk @ Workshop for Neutrino programs with Facilities in Japan

$$P(\nu_{\mu} \rightarrow \nu_{e}; \Phi_{31} = \pi/2)$$

~ $\frac{\sin^{2} 2\theta_{13}}{2(1-(L/L_{0}))^{2}} - 0.043 \frac{\sin 2\theta_{13}}{1-(L/L_{0})} \sin \delta$

→ Complementary between P($\nu \mu \rightarrow \nu e$) and Reactor θ_{13}

Reactor θ_{13} is essential to resolve the parameter dependences \rightarrow Aiming to have more robust sin² θ_{13} with better precision

θ_{13} measurement with reactor ν

- Reactor is <u>a free and rich</u> electron antineutrino source
- Direct measurements of θ_{13} with no parameter dependence
- Detection by <u>delayed coincidence technique</u> reducing background
- Suppression of systematic errors with two identical detectors

Experimental site @ Chooz, France

Reactors

EDF Electricité de France

Two reactor cores 4.27 GW_{th} for each core

Near detector

L = ~1 C

L = ~ 400 m ~120 m.w.e.

Operating since 2015

Far detector

L = ~ 1050 m ~300 m.w.e.

Operating since 2011

Two detectors data taking is started since beginning of 2015

Double Chooz collaboration

Detection principle

IBD reaction:
$$ar{
u}_e + p
ightarrow e^+ + n$$

Delayed coincidence:

Prompt signal

 e^+ ionization & annihilation: $E_{prompt} = 1 \sim 8 \text{ MeV}$

Delayed signal

n capture on Gd (H): E_{delayed} = ~8 (~2.2) MeV

• <u>Time coincidence of those</u> $\tau \sim 30$ (~220) μ s for Gd (H)

Two independent complex (Cd 8

 \rightarrow Two independent samples (Gd & H)

Relation of energy between prompt signal and reactor ν

$$E_{vis} = E(kin)_{e^+} + 2m_e$$
$$\simeq E_{\bar{\nu}_e} - (M_n - M_p) + m_e$$
$$\simeq E_{\bar{\nu}_e} - 0.782 \,\text{MeV}$$

 $\rightarrow \theta_{13}$ oscillation analysis w/ <u>spectral</u> <u>shape</u> gives further constraint

Double Chooz detector

Inner Detector (ID) - three cylindrical layers

v-target region ··· Capture on Gd
· Gd-loaded (1 g/l) liquid scintillator (10.3 m³)

γ -catcher region ··· Capture on H

• 22.3 m³ liquid scintillator

Buffer region

· 110 m³ mineral oil & 390 low-BG 10" PMTs

Detectors for background veto

Inner veto (IV)

Liquid scintillator & 78 8" PMTs

Outer veto (OV)

• Plastic scintillator strip + WLS fiber + MAPMT

Double Chooz milestones

June	2006	Double Chooz proposal	arXiv:0606025[hep-ex]
May	2008	Started FD construction	
Apr.	2011	Started FD data taking	
Nov.	2011	1st θ_{13} result (Gd)	Reported in LowNu2011 <u>Phys. Rev. Lett. 108 (2012) 131801</u>
June	2012	Started ND construction	
Sep.	2012	2nd θ_{13} result (Gd)	<u>Phys. Rev. D 86 (2012) 052008</u>
June	2013	1st θ_{13} result (H)	<u>Phys. Lett. B 723 (2013) 66</u>
Oct.	2014	3rd θ ₁₃ result (Gd)	<u>JHEP 10 (2014) 086</u>
Jan.	2015	Started ND data taking	
Jan.	2016	2nd θ ₁₃ result (H)	<u>JHEP 01 (2016) 163</u>
Mar.	2016	θ_{13} result w/ two detectors (Gd)	Reported in Moriond 2016
Sep.	2016	θ_{13} result w/ two detectors (Gd+H)	Reported in CERN seminar https://indico.cern.ch/event/548805/

This talk:

Latest results with two detectors & Gd+H analysis

(*) FD-I and FD-II data from same detector

SD phase (2R1D setup : FD-I & Reactor-off data)

- Bugey4 is used as an anchor of reactor ν flux (~1.7% of total flux precision)
- Reactor-off data (~7 days) is used to constrain BG

MD phase (2R2D setup : FD-II & ND data)

- <u>Nearly iso-flux</u> setup can suppress ν flux error (~0.1% of total flux precision)
- Identical detector cancels correlated errors like detection efficiency

Boosted statistics by Gd+H analysis

Preceding experiments in aspect of statistics (DayaBay & RENO) \rightarrow New strategy: Enlargement of effective volume

Increased statistics by longer running period (SD: 480 days & MD: 380 days) with ~2.5 times boosted by Gd+H analysis

10

ANN cut for accidental coincidence

Accidental BG is increased by lowering $E_{delayed}$ cut for Gd+H analysis $\rightarrow ANN$ (artificial neural network) is applied using 3 input variables

Accidental BG contamination is significantly reduced

 \rightarrow Negligible impact to θ_{13} measurement. This allows Gd+H analysis

(11)

BG veto & leak @ ND

Backgrounds

📒 (🛑) : mimic prompt (delayed) signal

- · Accidental coincidence: e.g.) environmental γ + spallation n
- Fast n / Stopping μ : n + p \rightarrow recoil p + n / $\mu \rightarrow e + \nu + \nu$
- Spallation product: e.g.) ${}^{9}\text{Li} \rightarrow {}^{8}\text{Be} + e + \nu + n$
- \rightarrow Vetoed by dedicated cuts like ANN

LS on Buffer @ ND

- \cdot Increased Stop- μ BG. Rejected by BG veto
 - → <u>No effect in our analysis (ND:FD consistent)</u>
- Cause is not evident (Filling or Running?)
 - \rightarrow Monitoring stability

Gd concentration in GC @ ND

- \cdot Found in comparison with ND and FD
- \rightarrow No effect in Gd+H analysis (w/ both volumes)
- \rightarrow Estimating effect to Gd analysis (x-check)

12

Remaining BG estimation

- All backgrounds are measured from data
 - Accidental BG : Off-time coincidence (Rate & Shape)
 - Fast n + Stopping μ BG : High energy window (Rate)

IV/OV tagging (Shape)

• ⁹Li BG

- · All backgrounds have characteristic spectrum
- Both "Rate & Shape" are used in oscillation analysis except for ⁹Li rate \rightarrow ⁹Li BG rate is constrained by the shape in the fit

Detector responce

Important to understand detector responce in ND and FD

- · Electronics calibration by the Light injection system
- Energy calibration by deployment and natural sources

Detector performances are validated. Confirmed well tuned MC

Systematic uncertainty

SD phase:

 \cdot Improved uncertainties. Reactor ν flux error was dominant

MD phase:

Improved statistics by Gd+H analysis. Flux error is strongly suppressed

(15)

 Detection systematics is main source to limit in Gd+H analysis (Proton number estimation is conservative at this point → Future improvement)

Oscillation fit result

Simultaneous χ^2 fit with Data-to-MC comparison for each data set

 $\sin^2 2\theta_{13} = 0.119 \pm 0.016$ with $\chi^2/ndf = 236.2/114$ cf.) Latest FD only results (Gd): $\sin^2 2\theta_{13} = 0.09 \pm 0.03$ with 52.2/40

16

FD-II/ND ratio

Common deviation is cancelled in FD-II/ND ratio \rightarrow The deviation comes from flux prediction (under investigation)

Current θ_{13} in the world

- ~2 σ tension with latest DayaBay result (sin²2 θ_{13} = 0.084 ± 0.005)
- Broader range of δ_{CP} is allowed if large θ_{13}
- \rightarrow It is still not so significant but <u>further validation is desirable</u>

Future prospects

Better precision with increased statistics and improved systematics
 → Uncertainty on proton number is next target

- 1st workshop on 3 reactor ν experiments was held (Oct. 2016 @ Seoul)
 - \rightarrow <u>Redundancy check</u>: Reviewed analyses each other. Further communication
 - \rightarrow <u>Ultimate goal</u>: Combined θ_{13} results from the reactor ν community

Conclusion

Reactor θ_{13} is a key for current/future $\nu_{\mu} \rightarrow \nu_{e}$ experiments

- To resolve oscillation parameter dependence (δ _{CP}, MH, θ ₂₃)
- \rightarrow Both robustness and precision of reactor θ_{13} are important

Latest θ_{13} results is presented

- Suppression of systematic errors by <u>Two detectors</u>
- Improved statistics & Enlarging effective volume by <u>Gd+H analysis</u>
- $\rightarrow sin^2 2 \theta_{13} = 0.119 \pm 0.016$ (cf. 0.09 ± 0.03 for latest results w/ FD only)

Further effort is ongoing

- Possible improvement by better understandings of systematics
- Redundancy check with reactor neutrino experiments
 - \rightarrow More robust and better precision measurement
- Other physics program with high statistics

e.g.) Directionality, Sterile ν search, Precision measurement of reactor ν spectrum