Status of Liquid Argon TPC R&D

28/Nov./2016 Neutrino frontier workshop 2016 Kentaro Negishi(Iwate Univ.)

R&D collaboration with KEK, and Kure National College of Technology

Introduction

- LAr TPC
 - 3D imaging(TPC)
 - Precision energy resolution in several GeV wide range
 - Possibility of large detector for future neutrino oscillation and nucleon decay experiments

LAr TPC principal

- Drifted ionization electron
 - 2D(x,y) information from anode (readout plane) with 3-4 mm pitch
 - z information from timing
 - \rightarrow 3D tracking
 - dE/dx information from electron density
- LAr scintillation (128 nm) makes trigger.
- Expected number of electron
 ~ 1 fC/mm (after recombination (2/3)).
- Drift velocity ~1.6 mm/µs (@ 500 V/cm)
- Diffusion ~ 1-2 mm @ 5m drift

7

Large LAr TPC

- ICARUS
 - 300 t × 2
 - 1.5 m drift
 - 3 direction wire readout
 - (4 m × 20 m anode) × 2, ~27000 ch
- MicroBooNE
 - 170 t
 - 2.6 m drift
 - 3 direction wire readout
 - 2.5 m × 12 m anode, 8256 ch

Larger detector are planed.

Anode wire planes

[mo] sixA-\

Liquid Argon TPC m.i.p. ionization: 6000 e/mm

Cathode

E_{drift} ~ 500V/cm

Toward > 10 kt LAr TPC Larger TPC leads longer drift length.

Long drift \rightarrow reduce channel number

• Long drift (> 5 m) requires those technology

≻LAr purity

...

- Purity < 0.1 ppb for long term
- ≻High voltage
 - > 250 kV (500 V/cm)
- ➢ Readout system
 - Low noise high signal gain
 - Wide dynamic range

- Cold operation
- Economical

Toward > 10 kt LAr TPC Larger TPC leads longer drift length.

Long drift \rightarrow reduce channel number

• Long drift (> 5 m) requires those technology

≻LAr purity

- Purity < 0.1 ppb for long term
- ≻High voltage
 - > 250 kV (500 V/cm)
- Readout system
 - Low noise high signal gain
 - Wide dynamic range

- Cold operation
- Economical

Requirement for electronics

 Configuration of electronics is as close as possible to anode to reduce detector capacitance.

 Target of electronics development is for single and dual phase.

Analog chip and board (32 ch) for small bench

LTARS ASIC chip (8 ch in 1 chip) was developed for 10 | LAr TPC.

4 LTARS, 32 ch Analog board

540mV

Peaking time

200mV

2usec

Output signal shape

200mV/di

M 2.00µs A Ch1 J 400m

(-20fC input)

Readout system for small LAr TPC bench Test of 10 I LAr TPC real equipment readout Compact readout system

Digital board

9 cm Analog board

32 ch differential input 12 bits FADC Sampling rate 40M Airtix-7 FPGA Ethernet output

Ethernet for DAQ (SiTCP)

External trigger input

Cosmic test with small test bench

Steps for larger detector

for charge signal

and more ...

Charged particle

Ream input nine (evacuated DF)

Steps for larger detector

3 × 1 × 1 readout configuration

• Readout test @ 3 × 1 × 1 detector

Development new analog board

Assuming $3 \times 1 \times 1$ configuration,

analog board must be highly integrated and low consumption.

32 ch readout Size 5 mm × 5 mm Operation voltage \pm 0.9 V Consumption < 50 mW in 1 chip for single and dual-phase detector

performance is checked @room temperature

Analog electronics cold test Assuming 3 × 1 × 1 configuration, analog board must be cold environment at – 160 °C.

In –160 °C, analog board is worked. To check LATRS2014 self and evaluate components We have plan of cold test again.

 Developed readout system is checked with equivalent configuration of 3 × 1 × 1 detector.

Readout test

10 digital boards

Configuration is considered for 3 × 1 × 1 detector

To check further, now 10 boards readout test is in progress.

Summary

- For realization of a large LAr TPC, fundamental technologies R&D are in progress.
- LTARS performance is checked using small TPC.
- LTARS2014 is developed for large detector.
- LTARS2014 cold test
 - Temperature characteristics are measured. and test is planed to check further.
- Readout test equivalent 3 m × 1 m × 1 m detector 640 ch
 - 10 boards readout is in progress.

Backup

Liquid argon medium

Drift Velocity [mm/µs] Amoruso et al Buckley et al п Miller et al. Badertscher et al. vlak1(86.95K) Walkow Walkowlak1(93.94K) 1.4 10⁻¹ 10⁻¹ 10² 10 1 Electric Field [kV/cm]

FIG. 19: Drift velocity in liquid argon for fields up to 100 kV/cm. The general plot (data collected from [47, 49–53]) is in log-scale to give a good overview, while the zoom-in, in the interesting region of the electric field for ArDM, is in linear scale. The solid line is a 5^{th} order polynomial proposed by [49]. It is fitted between 0 and 2 kV/cm and includes all the presented data. All data are corrected according to Equation (3.3) to a common temperature of 87 K.

FIG. 21: Expected longitudinal and transversal diffusion in liquid argon as a function of the drift distance, for various drift fields.

	Water	-6	Ne	Ar	Kr	Xe
Boiling Point [K] @ I atm	373	4.2	27.1	87.3	120.0	165.0
Density [g/cm³]	I	0.125	1.2	1.4	2.4	3.0
Radiation Length [cm]	36.1	755.2	24.0	14.0	4.9	2.8
Scintillation [γ/MeV]	-	19,000	30,000	40,000	25,000	42,000
dE/dx [MeV/cm]	1.9		1.4	2.1	3.0	3.8
Scintillation λ [nm]		80	78	128	150	175

ICARUS T600

S. HILLING

signal feedthrough

H.V. feedthrough

vire chamber

The ICARUS T600 detector is made of a large cryostat split into two identical, adjacent modules with internal dimensions $3.6 \times 3.9 \times 19.6 \text{ m}^3$ filled with about 760 t of ultra-pure liquid Argon. Such units may be operated together as a unique detector.

Each module houses two TPCs separated by a common central cathode. A uniform electric field (500 V/cm) is applied to the drift volume. Each TPC is made of three parallel wire planes, 3 mm apart, with 3 mm pitch, facing the drift path (1.5 m). Globally, 53248 wires with length up to 9 m are installed in the detector. By appropriate voltage biasing, the first two signal sensing planes (Induction-1, and -2) provide induced signals in a non-destructive way, whereas the last Collection plane finally collects the ionization charge. The reliable operation of the high-voltage system has been extensively tested up in the ICARUST600 up to about twice the operating voltage (150 kV, corresponding to 1 kV/cm).

On each chamber, the wire planes are oriented at 0°, \pm 60° angles with respect to the horizontal direction. Therefore a three-dimensional image of the ionizing event is reconstructed combining the wire coordinate on each plane at a given drift time. A remarkable resolution of about 1 mm3 is uniformly achieved over the whole active volume (\sim 340 m³ corresponding to 476 t).

ICARUS

MicroBooNE

Induction Plane MC Waveform (Bi-polar pulse as e⁻ pass through)

Collection Plane MC Waveform (Uni-polar pulse as e⁻ pass through)

me-Ticks (2MHz Sa

10 kt DUNE far detector

a)

Deep Underground Neutrino Experiment

Design is being developed to accommodate both single-and dual-phase detectors

LAGUNA-LBNO 50 kt detector

Large Apparatus studying Grand Unification and Neutrino Astrophysics for Long Baseline Neutrino Oscillation

LTARS vs LTARS2014

Low Temperature Analog Readout

LTARS

8ch# of channel32 ch~100 pFacceptable $C_{det.}$ ~300 pF ± 2.5 Voperation voltage ± 0.9 V

Low consumption < 50 mW/32 ch For single and dual phase

Gain-detector capacitance

ASIC設計段階で初段トランジスタの ドレイン電流を絞っているため、 大きな負荷容量に対しゲインが落ちる。

ゲインの検出器容量特性

LAr TPC working principal (1)

LAr TPC working principal (2)

LAr TPC working principal (3)

Plan for large LAr TPC

 $3 \times 1 \times 1$ m³, WA105 pilot detector

• Cosmic run until Spring 2017.

 $6 \times 6 \times 6 \text{ m}^3$, WA105 detector

- Cryostat is been constructing.
- Spring 2017: detector installation
- Winter 2017: TCO & cryostat sealing
- Winter 2018: start cryostat operation
- Spring 2018: ready to collect beam data

2D readout pad anode

- 4 mm pitch readout (small pads are connected along X or Y direction independently)
- Charge is collected by pads and shared equally in X and Y channel.
- Large readout anode pad is developed (40 cm × 38 cm), based on largest multilayer PCB in commercially product.

