Workshop on Neutrino Frontier 2016 Nov. 28-30, 2016, Yunokuni-Tensho, Ishikawa

JSNS²; particle- and astro-physics with J-PARC MeV neutrino beams

Tatsushi Shima RCNP, Osaka University, for JSNS² collaboration

- Sterile neutrino search; current status
- **JSNS**² experiment to search for sterile-v
- Neutrino-nucleus interaction for supernova physics
- Summary

Sterile neutrino

- introduced to solve anomalies in short baseline v-oscillation experiments (\rightarrow next page)
- singlet fermion of gauge interactions
- beyond SM, beyond simple GUTS like SU(5)
- sensitive to gravity only, but affects v-oscillations
- possible candidate of cold or warm dark matter

Indications of sterile neutrino

Exp.	v source	Signal	Significance	E, [MeV]	L [m]
LSND	μ Decay-At- Rest	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$	3.8σ	40	30
MiniBooNE	π Decay-In- Flight	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$	3.4σ		
		$v_{\mu} \rightarrow v_{e}$	2.8σ	800	600
		Combined	3.8σ		
Ga	e capture	$\overline{v}_e \rightarrow \overline{v}_x$	2.7σ	<3	10
Reactors	Beta decay	$\overline{v}_e \rightarrow \overline{v}_x$	3.0σ	3	101-2

Materials and Life Science Facility

50 GeV

(JAEA)

i-PARL

Linac

-PAR

Neutrino

Hadron Exp. Facility

M. Harada et al, arXiv:1601.01046 [physics.ins-det]

JSNS² J-PARC Sterile Neutrino Search using vs from J-PARC Spallation Neutron Source (E56)

JSNS² collaboration * Spokesperson

- M. Harada, S. Hasegawa, Y. Kasugai, S. Meigo, K. Sakai, S. Sakamoto, K. Suzuya *JAEA*, *Tokai*, *JAPAN*
- T. Maruyama*, S. Monjushiro, K. Nishikawa, M. Taira KEK, Tsukuba, JAPAN
- S. Iwata, T. Kawasaki Department of Physics, Kitasato University, JAPAN
- M. Niiyama Department of Physics, Kyoto University, JAPAN
- S. Ajimura, T. Hiraiwa, T. Nakano, M. Nomachi, T. Shima, Y. Sugaya Research Center for Nuclear Physics, Osaka University, JAPAN
- H. Furuta, Y. Hino, F. Suekane *Research Center for Neutrino Science, Tohoku University, JAPAN*
- I. Stancu University of Alabama, USA
- M. Yeh Brookhaven National Laboratory, USA
- W. Toki Colorado State University, USA
- H. Ray University of Florida, USA
- G. T. Garvey, C. Mauger, W. C. Louis, G. B. Mills, R. Van de Water Los Alamos National Laboratory, USA
- E. Iwai, J. Jordan, J. Spitz University of Michigan, USA

Time profile of neutrino beam

- Pulse width; 80ns ×2 (double pulses, 540ns interval)
- Repetition rate; 25Hz
- v from decay-at-rest µ ;
 well separated from
 beam pulse
 - \rightarrow low background

Detector

Gd-loaded liq. scintillator or/and Cherenkov, 25 ton \times 2, detecting

 $\overline{v_e} + p \rightarrow n + e^+ \text{ (prompt)}$ $n + {}^{157}Gd \rightarrow {}^{158}Gd + \gamma \text{ (delayed; Q~8MeV, } \tau_{cap} \sim 30 \mu \text{s})$ (253000b@thermal)

Prompt; $t_e = 1 \sim 10 \mu s$, $E_e = 20 \sim 60 MeV$ Delayed; $t_{\gamma} = 1 \sim 100 \mu s$, $E_{\gamma} = 7 \sim 12 MeV$

 \rightarrow Delayed coincidence

Merits of JSNS²

Neutrino beam

	Facility	Beam Pow. [MW]	Rep. Rate [Hz]	Pulse Width [ns]	Duty Factor
JSNS ²	J-PARC/MLF	1	25	620	1.55e-5
LSND	LANL/LAMPF	0.8	120	6e+5	0.072
KARMEN	RAL/ISIS	0.16	50	430	2.15e-5

--- $\Phi_{v} \sim 10 \times \text{KARMEN}$ S/N > 1000×LSND

Detector

	Туре	Mass [t]	L [m]
JSNS ²	Gd-LS PSD or/and Cherenkov	50	24
LSND	LS	167	30
KARMEN	LS + Gd coating	56	17.7

JSNS² sensitivity (5y⁻MW)

Current Status

Design and R&D are in progress for the followings;

- Tank structure
- PSD capability of LS and PSD-LS+Cherenkov
- PMT selection, calibration procedure
- Veto system
- Electronics (DAQ, HV)
- Software/Simulation

etc.

arXiv:1610.08186 [physics.ins-det]

Detector R&D

for good energy resolution and high neutron rejection factor

Performance test of n-γ discr. by waveform (Daya Bay type, Gd-loaded LAB-based LS)

MC for charge ratio in JSNS² (based on ²⁵²Cf test data)

Scintillation + Cherenkov test with cosmic-ray

Schedule

First Detector (25t)
 Second Detector (25t))

FY	2017	2018	2019	2020	2021
PMT					
Tank					
LS					
Electronics					
Commissioning					
Run					

- Approved as KEK Stage-1 experiment (E56)
- Funded by Grant-in-Aid for Scientific Research (S) for first detector

Ŋ9

Summary of direct measurements

Reaction	Method	Accuracy
d(v _e ,e⁻), d(v,v′)	Solar v, reactor, 3 H- β	~2%
¹² C(v _e ,e⁻)	Real-time meas.	~15%
¹² C(v _e ,v _e)	Real-time meas.	~30%
¹³ C(v _e ,e⁻)	Real-time meas.	76%
⁵⁶ Fe(v _e ,e⁻)	Real-time meas.	37%
⁷¹ Ga(v _e ,e⁻)	Radiochemical	11%
¹²⁷ I(v _e ,e ⁻)	Radiochemical	33%

How to determine v-A reaction rates ?

- Direct method --- secondary beams necessary
 Real neutrino beam experiment
 Beta decay of unstable nuclei (inverse reaction)
 Muon capture (inverse reaction)
- Indirect method --- analogous interaction
 Photobreakup, Coulomb dissociation, (e,e'), (p,p')
 → Neutral current (N.C.)
 Charge-exchange reactions (CEX); (p,n), (³He,t), ...
 → Charged current (C.C.)

Reduced transition probability

Gamow-Teller:
$$B(GT_{\pm}) = \frac{1}{2J_i + 1} \cdot \left| \left\langle i \left| \sum_{k}^{A} \boldsymbol{\sigma}_{k} \boldsymbol{\tau}_{k}^{\pm} \right| f \right\rangle \right|^{2}$$

CEX cross section: $\frac{d\sigma_{CE}}{d\Omega} \left(\theta = 0^{\circ}\right) \Box K \cdot N_{\sigma\tau} \cdot \left|J_{\sigma\tau} \left(\Delta q = 0\right)\right|^{2} \cdot B(GT)$ $= \hat{\sigma}_{GT} \left(\theta = 0^{\circ}\right) \cdot B(GT)$

K; kinematical factor, $N_{\sigma\tau}$; distortion factor

 $J_{\sigma\tau}$; volume integral of effective interaction

 $(\hat{\sigma}_{GT})$; "unit cross section"

Fixed by using β -decay data, but $E_x < Q_\beta$...

Data of absolute σ_{GT} are needed for calibration !

B(GT); (³He,t)@RCNP vs RPA calc.

A. Byelikov et al., PRL98, 082501 (2007)

Data of absolute σ_{GT} are needed for calibration !

Energy Spectra of Decay-At-Rest v

$^{12}C(v_{e'}e^{-})^{12}N_{g.s.}$ signal

 $v_e + {}^{12}C \longrightarrow e^{+} + {}^{12}N \quad (Q = -17.3 \text{MeV} \rightarrow E_e < 35.5 \text{MeV})$ ${}^{12}N \longrightarrow {}^{12}C + e^{+} + v_e \quad (Q = +17.3 \text{MeV})$ $(T_{1/2} = 11.0 \text{ms})$

Prompt; $t_{e^-}=1\sim10\mu s$, $E_{e^-}=20\sim40MeV$ Delayed; $t_{e^+}=0.1\sim47.6ms$, $E_{e^+}=10\sim18MeV$

S/N and statistical accuracy

	$^{12}C(v_{e'}e^{-})^{12}N_{g.s.}$	Background
Rate (single) [/y/MW/50t]	1513	2.43×10 ⁵
Efficiency (coincidence)	0.396	
Prob. of acc. Coin. [/detector]		1.15
Effi. with △VTX<20cm	0.82	0.0011
Effi. with Lifetime cut	0.91	0.45
Rate (coin.) [/y/MW/50t]	448	138.3
Stat. err. [%]	6.0 (1y) / <<15% (pi	2.7 (5y) revious) !!

Summary

- The experiment J-PARC E56 has been proposed by the JSNS² collaboration to search for sterile neutrinos.
- From BG study, JSNS² is expected to have a sensitivity to survey the region claimed by previous experiments.
- > Approved as KEK Stage-1 exp. and funded for one detector.
- Data of absolute cross sections of neutrino-induced nuclear reactions are indispensable to quantitatively understand mechanism of SNe and SN nucleosynthesis.
- JSNS² will be also useful for direct measurement of ¹²C(v_e,e⁻)¹²N reaction rate with better accuracy, which will contribute to better modeling of SNe.