Normal hierarchyを探索可能なdouble-beta実験と ニュートリノ混合行列のユニタリティ検証実験

Masaki Ishitsuka (TokyoTech)

November 29th, 2016

Neutrino Frontier Workshop 2016

No question about the importance of 0v2β decay search

- KamLAND-zen and other projects aim to test M vs. D with IH
- What is minimum requirement to reach 1meV?

- >500 ton mass of double-beta decay source
- <1% energy resolution
- ⇒ about 2 event/year expected with 500 ton·yr
- Background should be below this level
 - \rightarrow PID (e/ α , e/ γ , 2 electron tracks) necessary

Unitarity of neutrino mixing matrix (no specific model assumed)

$$U^{\dagger}U = 1 \Rightarrow$$

$$\begin{split} \left|U_{e1}\right|^2 + \left|U_{e2}\right|^2 + \left|U_{e3}\right|^2 &= 1 & \text{and for μ and τ} \\ U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* &= 0 & \text{and for μ,τ and $e,$\tau$} \\ \left|U_{e1}\right|^2 + \left|U_{\mu 1}\right|^2 + \left|U_{\tau 1}\right|^2 &= 1 & \text{and for 2 and 3} \end{split}$$

and for 2,3 and 1,3

$$\Delta m_{21}^2 << \Delta m_{31}^2 \sim \Delta m_{32}^2$$

 $U_{e1}U_{e2}^* + U_{\mu 1}U_{\mu 2}^* + U_{\tau 1}U_{\tau 2}^* = 0$

Direct test

$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1$$

KamLAND:

$$4|U_{e1}|^2|U_{e2}|^2$$

DC, Daya Bay, RENO: $4|U_{e3}|^2(|U_{e1}|^2+|U_{e2}|^2)$

Solar (with MSW): $\left|U_{e2}\right|^2$

$$1 - |U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 < \sim 0.04$$

Other direct test?

$$\left|U_{\mu 1}\right|^{2} + \left|U_{\mu 2}\right|^{2} + \left|U_{\mu 3}\right|^{2} = 1$$

$$v_{\mu}$$
 disappearance ($\Delta m^2_{31(32)}$): $4 \left| U_{\mu 3} \right|^2 \left(\left| U_{\mu 1} \right|^2 + \left| U_{\mu 2} \right|^2 \right)$

⇒ LBL, atmospheric

$$v_{\mu}$$
 disappearance (Δm_{21}^2): $4 \left| U_{\mu 1} \right|^2 \left| U_{\mu 2} \right|^2$

⇒ atmospheric sub-GeV v_{μ} ? disappearance canceled by v_{e} → v_{μ} as v_{μ}/v_{e}^{2} need to understand flux precisely

Alternative approach (indirect)

- Test consistency of mixing angle from different oscillation modes
 - Discrepancy indicates violation of unitarity due to e.g. mixing of 4th neutrino
- θ₁₃
 - From disappearance $(v_e \rightarrow v_e)$: Reactor
 - From appearance ($v_u \rightarrow v_e$): LBL, atmospheric
- θ₂₃
 - From disappearance $(v_{\mu} \rightarrow v_{\mu})$: LBL, atmospheric
 - From appearance ($v_u \rightarrow v_\tau$): Atmospheric, LBL