Testing neutrino mass generation mechanisms from the lepton flavor violating decay of the Higgs boson

0000

Mayumi AOKI (Kanazawa U.)

S. Kanemura, K, Sakurai, H. Sugiyama (U. of Toyama) Phys.Lett. B763 (2016) 352

- Neutrino mass scale is much smaller than the q and ℓ masses.

 $m_v \sim 0.1 \text{ eV} << m_q, m_\ell$

- The origin of the neutrino mass might be different from that of q and ℓ .

- Neutrino masses are generated via the radiative effect.
- Due to the loop suppression factor, the neutrino masses would be explained in a natural way by the TeV-scale dynamics with the unsuppressed couplings.

e.g.) 2-loop model

Zee-Babu model

Zee (1986); Babu (1988)

- New particles: s_L^- , s^{++} - $f \sim O(1)$, $M \sim 10^3 \text{ GeV}$

Model with dark matter particle

Ma (2006)

- Z₂ symmetry is introduced.
- New particles: $Z_2 \text{ odd } \psi_R$, η

 η : Inert doublet scalar

$$\eta = \begin{pmatrix} \eta^+ \\ (\eta_R^0 + i\eta_I^0)/\sqrt{2} \end{pmatrix}, \quad \langle \eta \rangle = 0$$

- The Z₂ symmetry forbids the Dirac v mass term and guarantees the stability of DM.
- DM candidates : ψ_R , η^0_R , η^0_I
- The framework would explain the neutrino mass and the DM.

- The models are classified by focusing on the combinations of new Yukawa coupling.
- The mechanisms are tested by LFV phenomena.

charged LFV, LFV decays of the Higgs boson

Introduction									
- LFV decays of the Higgs boson $h ightarrow ll'$									
	Ε	$\mathrm{BR}(h \to \ell \ell') \equiv \mathrm{E}$	$\operatorname{BR}(h \to \ell \overline{\ell'}) + \operatorname{BR}(h \to \overline{\ell} \ell')$						
$ \mathrm{BR}(h ightarrow \mu \tau) $		Best Fit							
CMS 8TeV	< 1.51 %	$0.84_{-0.37}^{+0.39}\%$	2.4σ excess						
13TeV	< 1.20 %	$-0.76^{+0.81}_{-0.84}\%$	No excess observed						
ATLAS 8TeV	< 1.43 %	$0.53^{+0.51}_{-0.51}$ %							
Future colliders –	> O(0.01) %	Han and Marf	atia (2001), Kanemura et.al. (2004)						
BR $(h \rightarrow e\mu)$ CMS 87	$\Gamma eV < 3.5 \times 2$	10-2 %							
BR $(h \rightarrow e\tau)$ CMS 8'	$\Gamma eV < 6.9 \times 10^{-1}$	10-1 %							
- We discuss impa	ct of future	discoveries	of $h \rightarrow ll'$						

- We discuss impact of future discoveries of $h \rightarrow ll'$ on the mechanisms to generate neutrino masses.

新学術領域研究「ニュートリノフロンティアの融合と進化」研究会 2016 11月30日

6

$$h \rightarrow ll'$$

- Tree-level LFV

$$h \cdots l'$$

e.g) Type III two Higgs doublet model $\mathcal{L}_Y = y_{ij}^1 \bar{\psi}_i \psi_j \Phi_1 - y_{ij}^2 \bar{\psi}_i \psi_j \Phi_2$

We consider the FCNC interactions at the tree level are absent. (by imposing the softly-broken Z₂ symmetry)

- Loop-level LFV

$$h \dots < 1$$

Model with new Yukawa interaction between new scalar and lepton.

Dimension- 4 and -6 operators

$$\mathcal{L} = Y[\overline{L}\Phi\ell'_R] + \frac{Y_6}{\Lambda^2}[\overline{L}\Phi\ell'_R(\Phi^{\dagger}\Phi)]$$

$$\rightarrow \left(\frac{v}{\sqrt{2}}Y + \frac{v^3}{2\Lambda^2}Y_6\right)[\ell_L\ell'_R] + \left(\frac{1}{\sqrt{2}}Y + \frac{3}{2\Lambda^2}Y_6\right)[\ell_L\ell'_Rh$$
Misalignment

Introduction Classification of models h → ll'

4. Summary

Classification of Models

 We classify the models by focusing only on the combinations of Yukawa coupling matrices.

Majorana Neutrino Kanemura, Sugiyama (2016)

Classification of Models

Dirac Neutrino

- Dirac masses can be generated at the the loop level.

Nasri, Moussa (2002)

 $\begin{array}{c|c} \mathbf{D1} \\ & s_L^- & \langle \phi^{0*} \rangle & s_R^+ \\ & \mathbf{I} & (\ell_L)^c & \mathbf{I} & (\ell_R)^c & \mathbf{I} \\ \nu_L & \underbrace{-\mathbf{I}} & (\ell_L)^c & \mathbf{I} & (\ell_R)^c & \mathbf{I} \\ & Y_A^s & \mathcal{Y}\ell & Y^s & \nu_R \end{array}$

 $(Y_{\eta_{2}}^{0})^{T}$

- In order to forbid the $L \Phi v_R$, the softly-broken Z₂ symmetry (Z₂') is introduced.

 v_R : Z_2' odd

Kanemura, Sakurai, Sugiyama (2016)

Dirac Neutrino

Scalar with leptonic Yukawa int.

	s^0	s_L^+	s_R^+	s^{++}	$\Phi_{ u}$	Φ_2	Δ
$\mathrm{SU}(2)_L$	1	<u>1</u>	<u>1</u>	<u>1</u>	<u>2</u>	<u>2</u>	<u>3</u>
$\mathrm{U}(1)_Y$	0	1	1	2	1/2	1/2	1
Lepton number	-2	-2	-2	-2	0	0	-2
Z'_2	+	+	_	+	_	+	+
D1		\checkmark	\checkmark				
D2			\checkmark				\checkmark
D3			\checkmark	\checkmark		\checkmark	
D4			\checkmark	\checkmark			
D5	\checkmark		\checkmark			\checkmark	
D6	\checkmark		\checkmark				
D7					\checkmark		

								2 Z	Z_2 -od	d
	s^0	s_L^+	s_R^+	s^{++}	$\Phi_{ u}$	Φ_2	Δ	s_2^0	s_2^+	η
$\mathrm{SU}(2)_L$	1	<u>1</u>	<u>1</u>	<u>1</u>	<u>2</u>	<u>2</u>	<u>3</u>	1	<u>1</u>	<u>2</u>
$\mathrm{U}(1)_Y$	0	1	1	2	1/2	1/2	1	0	1	1/2
Lepton number	$\left -2 \right $	-2	-2	-2	0	0	-2	-1	-1	-1
Z'_2	+	+	_	+	_	+	+	_	+	+
D8		\checkmark						\checkmark	\checkmark	
D9							\checkmark	\checkmark	\checkmark	
D10			\checkmark							\checkmark
D11			\checkmark			\checkmark			\checkmark	
D12			\checkmark						\checkmark	
D13			\checkmark			\checkmark		\checkmark		
D14			\checkmark					\checkmark		
D15						\checkmark		\checkmark	\checkmark	
D16								\checkmark	\checkmark	
D17			\checkmark						\checkmark	\checkmark
D18								\checkmark		\checkmark

1. Introduction 2. Classification of models 3. $h \rightarrow ll'$

4. Summary

 Under the constraint from the cLFV, the BR of h LFV decay is too small to be observed if it is radiatively produced.

BR($\mu \rightarrow e\gamma$) < 4.2 ×10⁻¹³, BR($\tau \rightarrow l'\gamma$) < 10⁻⁸

- If *h* LFV decay is observed, we might take FCNC at the tree level or take some extension to suppress $l \rightarrow l' \gamma$ by cancellation.

$$h \rightarrow ll'$$

- Each of the Mechanisms has new Yukawa interactions, which can produce both $l \rightarrow l' \gamma$ and $h \rightarrow ll'$.
- 14 Mechanisms will be excluded if $h \rightarrow ll'$ is observed.
- All other Mechanisms have two kinds of new Yukawa interactions.
- In the Mechanisms-M1, M5, D1, D2, D8, D9 and D10, their effects to $l \rightarrow l' \gamma$ cannot be cancelled with each other.

$$h \rightarrow ll'$$

- Some Mechanisms for Dirac neutrino masses can be compatible with the observation of $h \rightarrow ll'$.

								$\ell ightarrow$	$\ell'\gamma$
	s^0	s_L^+	s_R^+	s^{++}	$\Phi_{ u}$	Φ_2	Δ	ℓ'_L	ℓ_R'
$\mathrm{SU}(2)_L$	1	<u>1</u>	<u>1</u>	1	<u>2</u>	<u>2</u>	<u>3</u>	_	
$\mathrm{U}(1)_Y$	0	1	1	2	1/2	1/2	1	_	
Lepton number	-2	-2	-2	-2	0	0	-2	_	
Z'_2	+	+	_	+	_	+	+		
D1		\checkmark	\checkmark					✓	✓
D2			\checkmark				\checkmark	\checkmark	\checkmark
D3			\checkmark	\checkmark		\checkmark			~~
D4			\checkmark	\checkmark					√ √
D5	\checkmark		\checkmark			\checkmark			\checkmark
D6	\checkmark		\checkmark						\checkmark
D7					\checkmark			_ √	

								2	Z_2 -od	d	$\ell \rightarrow$	$\ell'\gamma$
	s^0	s_L^+	s_R^+	s^{++}	Φ_{ν}	Φ_2	Δ	s_2^0	s_2^+	η	ℓ'_L	ℓ_R'
$\mathrm{SU}(2)_L$	1	1	1	1	<u>2</u>	<u>2</u>	<u>3</u>	1	<u>1</u>	<u>2</u>		
$\mathrm{U}(1)_Y$	0	1	1	2	1/2	1/2	1	0	1	1/2		
Lepton number	-2	-2	-2	-2	0	0	-2	-1	-1	-1		
Z'_2	+	+		+		+	+	_	+	+		
D8		\checkmark						\checkmark	\checkmark		\checkmark	\checkmark
D9							\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
D10			\checkmark							\checkmark	\checkmark	\checkmark
D11			\checkmark			\checkmark			\checkmark			$\checkmark\checkmark$
D12			\checkmark						\checkmark			$\checkmark\checkmark$
D13			\checkmark			\checkmark		\checkmark				\checkmark
D14			\checkmark					\checkmark				\checkmark
D15						\checkmark		\checkmark	\checkmark			\checkmark
D16								\checkmark	\checkmark			\checkmark
D17			\checkmark						\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$
D18								\checkmark		\checkmark	\checkmark	

新学術領域研究「ニュートリノフ

$$h \rightarrow ll'$$

- Some Mechanisms for Dirac neutrino masses can be compatible with the observation of $h \rightarrow ll'$.

								$\ell \rightarrow$	$\cdot \ell' \gamma$		
	s^0	s_L^+	s_R^+	s^{++}	Φ_{ν}	Φ_2	Δ	ℓ'_L	ℓ'_R		
$\mathrm{SU}(2)_L$	1	1	1	1	<u>2</u>	<u>2</u>	<u>3</u>				
$U(1)_Y$	0	1	1	2	1/2	1/2	1	_			D /
Lepton number	$\left\ -2 \right\ $	-2	-2	-2	0	0	$\left -2 \right $				DŦ
Z_2'	+	+	_	+	_	+	+	_			
D1		\checkmark	\checkmark					√	\checkmark		
D2			\checkmark				\checkmark	√	\checkmark		
D3			\checkmark	\checkmark		\checkmark			~~	-	The
D4			\checkmark	\checkmark					~~		inte
D5	\checkmark		\checkmark			\checkmark			\checkmark		SR^+
D6	✓		\checkmark						\checkmark		-11
D7					\checkmark			✓			$(Y^s$
								_			

- The singlet scalars S_R^+ and S^{++} interact with ℓ_R .

$$(Y^s)_{\ell i} \left[\overline{(\ell_R)^c} \,\nu_{iR} \, s_R^+ \right]$$

$$(Y_S^s)_{\ell\ell'} \left[\overline{(\ell_R)^c} \, \ell'_R \, s^{++} \right]$$

- Contributions of these scalars to $\ell \rightarrow \ell_R \gamma$ can be destructive.

$$\mathrm{BR}(\ell \to \ell' \gamma) \propto \left| \frac{(Y^{s\dagger} Y^s)_{\ell\ell'}}{m_{s_R^+}^2} + 16 \frac{(Y^{s\dagger}_S Y^s_S)_{\ell\ell'}}{m_{s^{++}}^2} \right|^2 \ll \left| \frac{(Y^{s\dagger} Y^s)_{\ell\ell'}}{m_{s_R^+}^2} \right|^2,$$

- The 10⁻³ tuning of two amplitudes is required for the cancellation to satisfy BR($l \rightarrow l'\gamma$) < 10⁻⁸, since BR($h \rightarrow \mu \tau$) ~ 10⁻³ naively corresponds to BR($\tau \rightarrow \mu \gamma$) ~ 10⁻².

$$h \rightarrow ll'$$

- The contributions of s_R^+ and s^{++} to $h \rightarrow II'$ can be constructive.

h
ightarrow ll'

$$\mathrm{BR}(h \to \ell \ell') \propto \left| \lambda_{hs^+} \frac{(Y^{s^\dagger} Y^s)_{\ell \ell'}}{m_{s_R^+}^2} + 4\lambda_{hs^{++}} \frac{(Y^{s^\dagger} Y^s_S)_{\ell \ell'}}{m_{s^{++}}^2} \right|^2 \sim \left| \lambda_{hs^+} \frac{(Y^{s^\dagger} Y^s)_{\ell \ell'}}{m_{s_R^+}^2} \right|^2,$$

- The λ_{hS+} and λ_{hS++} should have the opposite sign.
- The scalar interactions $\lambda_{hs^+}vh|s_R^+|^2$, $\lambda_{hs^{++}}vh|s^{++}|^2$ are not used for the neutrino mass generation. They are free from constraints from neutrino oscillation experiments.

- The Mechanisms-D3, D4, D11, D12, and D17 of the Dirac neutrino mass would be preferred when $h \rightarrow ll'$ is observed.

10

$$\begin{array}{c}
\textbf{D3} & \downarrow \ell_{R} & \downarrow \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\mu_{L} & \downarrow \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\mu_{L} & \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D4} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D11} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D12} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & (\psi_{R}^{0})^{c} & \psi_{R}^{0} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D12} & \downarrow \underline{\leq} & \ell_{L} & \downarrow & \ell_{R} & (\psi_{R}^{0})^{c} & \psi_{R}^{0} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D17} & \downarrow \underline{\leqslant} & \ell_{L} & \downarrow & \ell_{R} & (\psi_{R}^{0})^{c} & \psi_{R}^{0} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \nu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \mu_{R} \\
\textbf{D17} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow (\ell_{R})^{c} & \downarrow & \psi_{R} & \downarrow \end{pmatrix}$$

Summary

- We have studied the LFV decay of the Higgs boson in a wide set of models for neutrino masses.
- The simple models of Majorana neutrinos are excluded if $h \rightarrow ll'$ is discovered.
- The five Mechanisms for Dirac neutrinos can give a significant amount of $h \rightarrow ll'$ with the suppressed $l \rightarrow l'\gamma$ process.
 - Two kinds of scalar particles couple to l_R .
 - Their contributions to $l \rightarrow l' \gamma$ can be cancelled with each other.

D3, D4 S_{R}^{+} , S^{++} D11, D12, D17 S_{R}^{+} , S_{2}^{+} (Z2 odd)

- Future discovery of the nonzero BR($h \rightarrow ll'$) shall be a strong probe of models for neutrino masses.