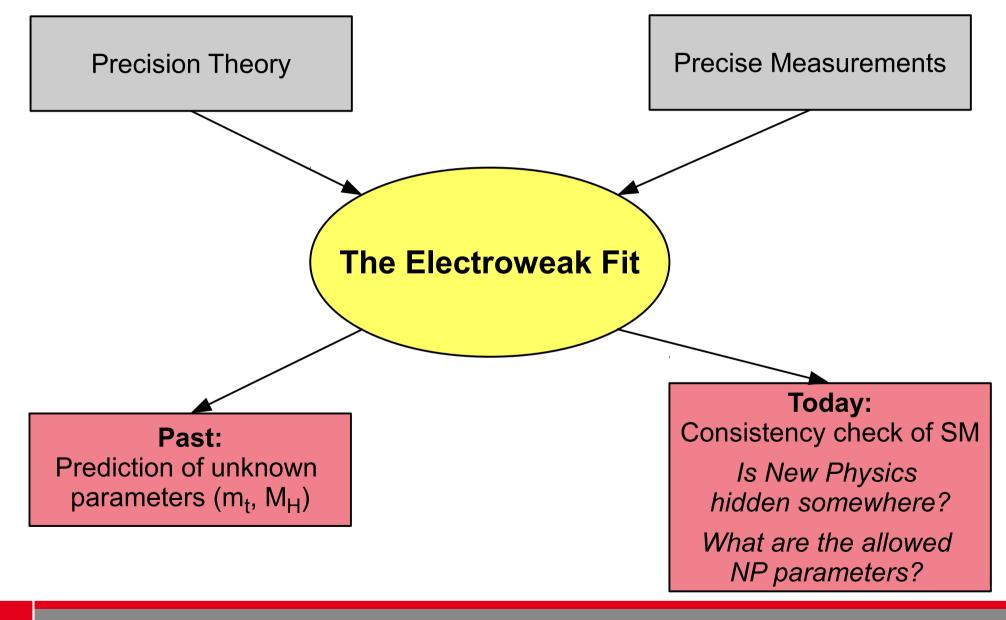


Electroweak Fits in the Standard Model and Beyond

Thomas Peiffer

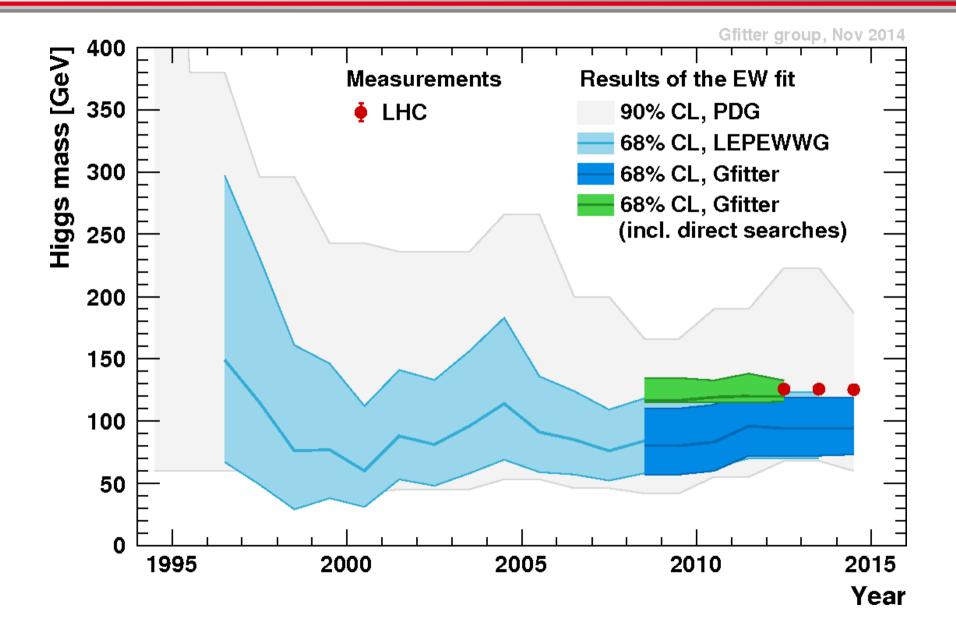
on behalf of the Gfitter collaboration

M. Baak, J. Cuth, J. Haller, A. Hoecker, R. Kogler, K. Mönig, M. Schott, J. Stelzer


Precision theory for precise measurements Quy-Nhon

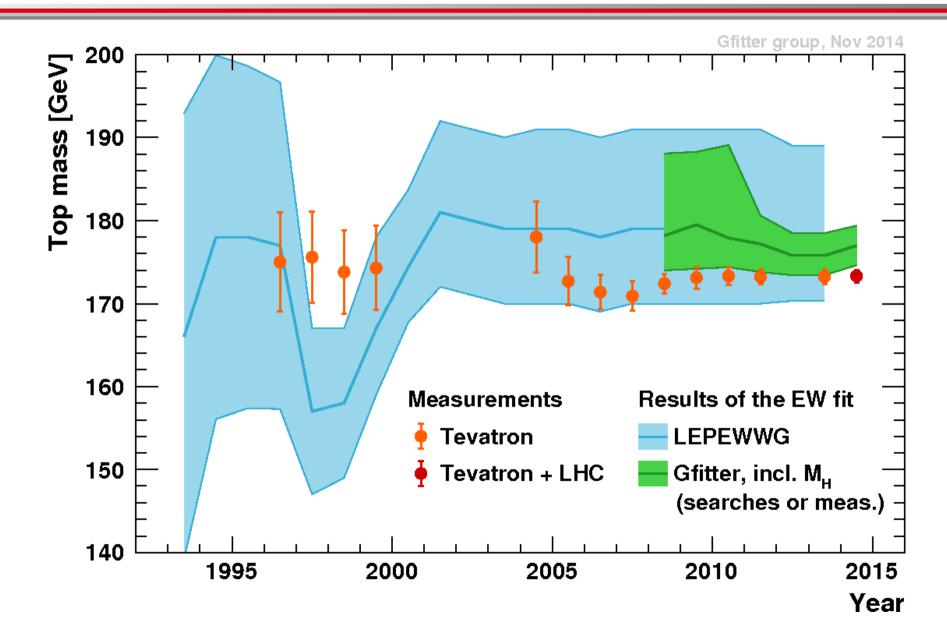
26.09.2016

Overview



Electroweak Fits

Higgs Mass



Top Quark Mass

Content

The electroweak fit of the SM

New physics constraints

Example: The 2-Higgs-Doublet Model (2HDM)

Future Colliders

The Electroweak Fit G fitter

- Gauge & scalar sector is determined by 4 parameters (choose α , G_F, M_Z, M_H)
- Other parameters and observables related by theory

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2} \qquad M_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F}$$

- \rightarrow over-constrained theory
- Other SM parameters (quark masses, M_{H} , α_{S}) enter by radiative corrections

$$\sin^2\theta_{\text{eff}}^f = \kappa_Z^f \sin^2\theta_W \qquad g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2\theta_{\text{eff}}^f \right) \qquad g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$

• G_{F} known with high precision \rightarrow not varied in the fit

Theoretical Input

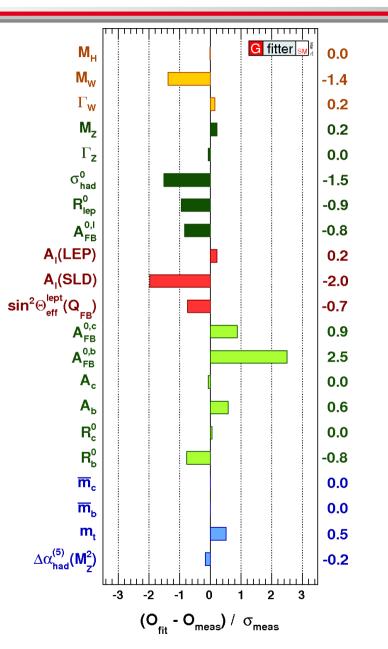
- Consistent set of full EW 2-loop calculations is available:
 - $\sin^2 \Theta_{\text{eff}}^{\text{f}}$: effective weak mixing angle (from ratio g_V/g_A) (M. Awramik et al., PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009))
 - M_W: mass of the W boson, includes QCD corrections at 4-loop level (M. Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002))
 - Γ_f: partial widths of the Z boson (A. Freitas, JHEP 04, 070 (2014))
 - Radiator functions to Γ_f: QED and QCD corrections up to N³LO (Baikov et al., PRL 108, 222003 (2012))
 - Γ_W: width of the W boson, only 1-loop EW corrections included (Cho et al., JHEP 1111, 068 (2011)
- Estimate uncertainties due to unknown higher orders (using a geometric series):

$\delta_{ m theo}M_W$	4 MeV	$\delta_{\text{theo}}\Gamma_{u,c}$	$0.12 { m MeV}$
$\delta_{ m theo} \sin^2 \! heta_{ m eff}^f$	$4.7 \cdot 10^{-5}$	$\delta_{ m theo}\Gamma_b$	$0.21 { m MeV}$
$\delta_{ m theo}\Gamma_{e,\mu, au}$	$0.012 \; {\rm MeV}$	$\delta_{ m theo}\sigma_{ m had}^0$	$6~{ m pb}$
$\delta_{ m theo}\Gamma_{ u}$	$0.014~{\rm MeV}$	$\delta_{ ext{theo}} \mathcal{R}_{V,A}$	$\sim \mathcal{O}(\alpha_s^4)$
$\delta_{ ext{theo}}\Gamma_{d,s}$	$0.09 { m MeV}$	$\delta_{ m theo}m_t$	$0.5~{ m GeV}$

Uncertainty on m_t: Relation between m_{pole} and measured mass

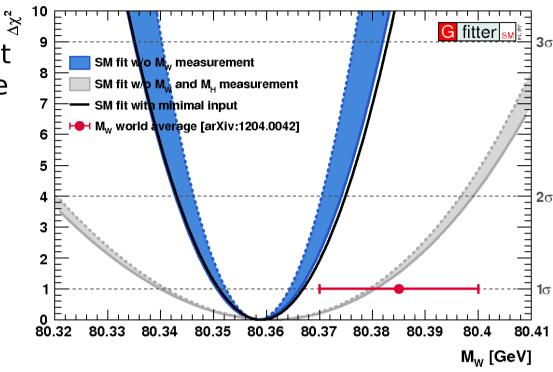
Experimental Input

All SM parameters measured in experiments	M_H [GeV]	125.14 ± 0.24
 Input from e⁺e⁻ colliders (LEP+SLC): 	$\overline{M_W \text{ [GeV]}}$	80.385 ± 0.015
• Μ _z , Μ _w , Γ _w , Γ _z	$\frac{\Gamma_W [\text{GeV}]}{M_Z [\text{GeV}]}$	$\frac{2.085 \pm 0.042}{91.1875 \pm 0.0021}$
 forward-backward asymmetries 	$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023
 partial-Z-width ratios R 	$\sigma_{ m had}^0 [{ m nb}] \ R_\ell^0$	$\begin{array}{c} 41.540 \pm 0.037 \\ 20.767 \pm 0.025 \end{array}$
 Input from hadron colliders (LHC+Tevatron): 	$A_{ m FB}^{0,\ell} \ A_\ell$	0.0171 ± 0.0010 0.1499 ± 0.0018
• Μ _W , Γ _W	$\sin^2 heta_{ m eff}^\ell(Q_{ m FB})$	0.1499 ± 0.0018 0.2324 ± 0.0012
• M _H	$egin{array}{c} A_c \ A_b \end{array}$	$0.670 \pm 0.027 \\ 0.923 \pm 0.020$
• m _t	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
• $\alpha_s(M_z^2)$ enters the fit as free parameter	$egin{array}{l} A_{ m FB}^{0,b} \ R_c^0 \end{array}$	$\begin{array}{c} 0.0992 \pm 0.0016 \\ 0.1721 \pm 0.0030 \end{array}$
• Evolution of α parameterized with $\Delta \alpha^{(5)}_{had}$	$\frac{R_b^0}{}$	0.21629 ± 0.00066
Evolution of a parameterized with Za had	$\overline{m}_c [\text{GeV}] \ \overline{m}_b [\text{GeV}]$	$\frac{1.27 \substack{+0.07 \\ -0.11}}{4.20 \substack{+0.17 \\ -0.07}}$
	$m_t \; [\text{GeV}]$	173.34 ± 0.76


 $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$

 2757 ± 10

Results



- Global χ^2 =17.8 (for ndof = 14), p-value=0.21
- Predictions consistent with measurements
- Largest deviation for $A_{FB}^{0,b} \sim 2.5\sigma$

Indirect Determination G fitter

- Perform fit without including direct measurement of observable in the fit
- Indirect determination of M_w more precise than direct measurement

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \\ \pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$

 $= 80.358 \pm 0.008_{\rm tot} \; {\rm GeV} \, .$

compared to world average: 80.385 ± 0.015 GeV (difference of 1.6 σ)

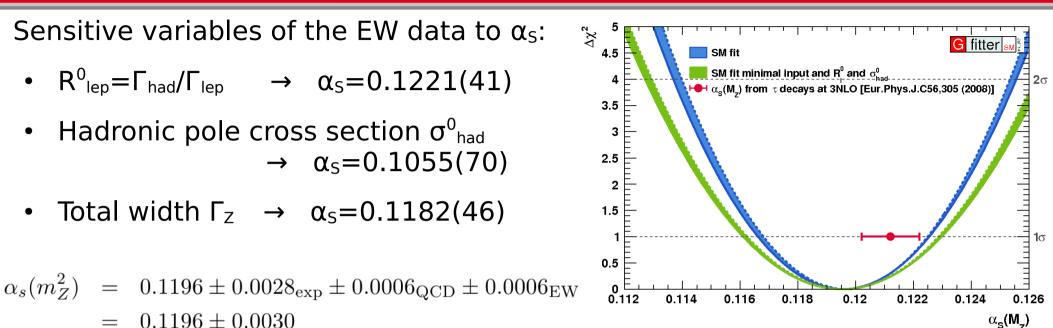
Strong Coupling

$$= 0.1196 \pm 0.0030$$

$$= 0.1196 \pm 0.0030$$

 Γ_z might be affected by unknown New Physics contributions

 \rightarrow Include Γ_{inv} as additional parameter in the fit:


 $\alpha_S(m_Z^2) = 0.1186 \pm 0.0034$

 $\Gamma_{\rm inv} = 503.0 \pm 2.5 {\rm MeV}$

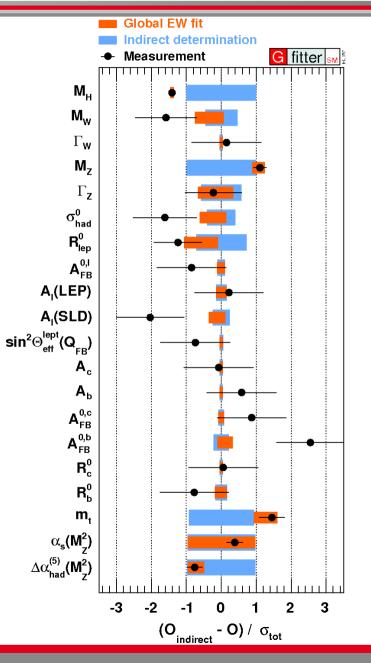
(PDG value: $\Gamma_{inv} = 499.0 \pm 1.5 \text{ MeV}$)

fitter

Indirect Determination G fitter

Other indirect determinations:

 $M_H = 93^{+25}_{-21} \,\mathrm{GeV}$

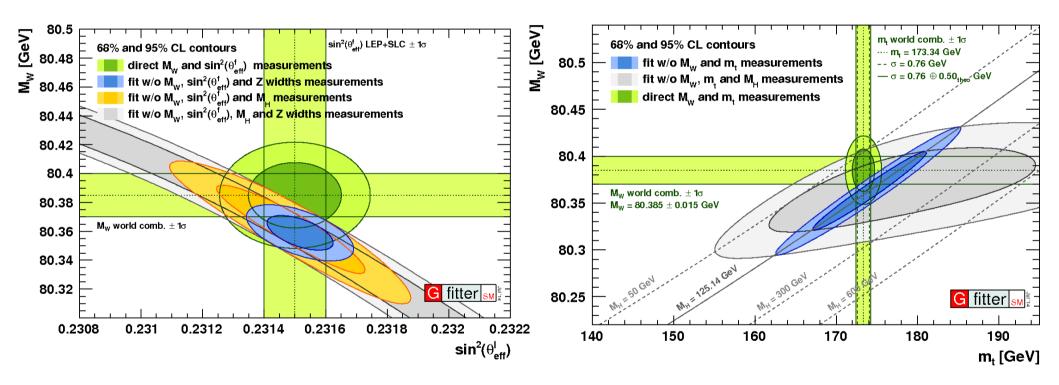

direct value: 125.09 ± 0.24 GeV

$$m_t = 177.0^{+2.3}_{-2.4} \,\mathrm{GeV}$$

direct value: 173.34 ± 0.76 GeV

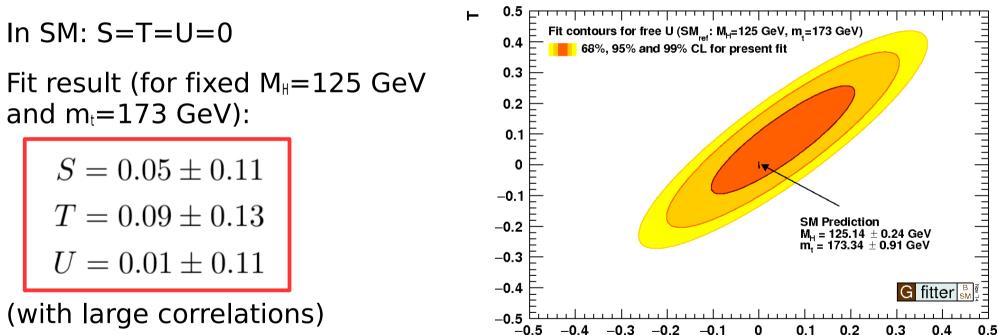
direct value from cross section:

173.68 ± 0.20 (stat) + 1.58 -0.97 (syst) GeV (arXiv:1603.06536)


Electroweak Fits

2D Scans

- Testing simultaneously two sensitive observables to New Physics effects
- Determine χ^2 for each point in 2D space


- Increased precision due to knowledge of $M_{\mbox{\tiny H}}$
- Good consistency of SM predictions and measurements

Oblique Parameters

New Physics in electroweak sector parameterized with 3 parameters:

- S: changes to neutral currents
- T: changes to difference between charged and neutral currents
- U: changes to W width and mass

No hint for New Physics but constraints on BSM models!

S

G fitter

Example: 2HDM

The 2-Higgs-Doublet Model

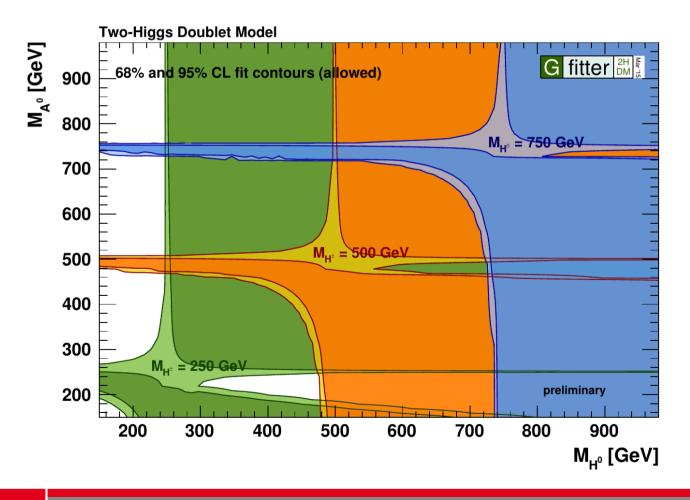
- Simple extension of the SM Higgs sector
- One additional Higgs doublet \rightarrow 5 Higgs bosons:

 h_0 , H_0 , A_0 , H^+ , H^-

- Additional free parameters:
 - tan $\beta = v_2/v_1$
 - α: mixing angle of the neutral Higgs fields
 - M_{12}^{2} : mass parameter of the mixed term $\Phi_{1}^{\dagger}\Phi_{2}$, soft breaking scale

How is parameter space constrained by precision measurements?

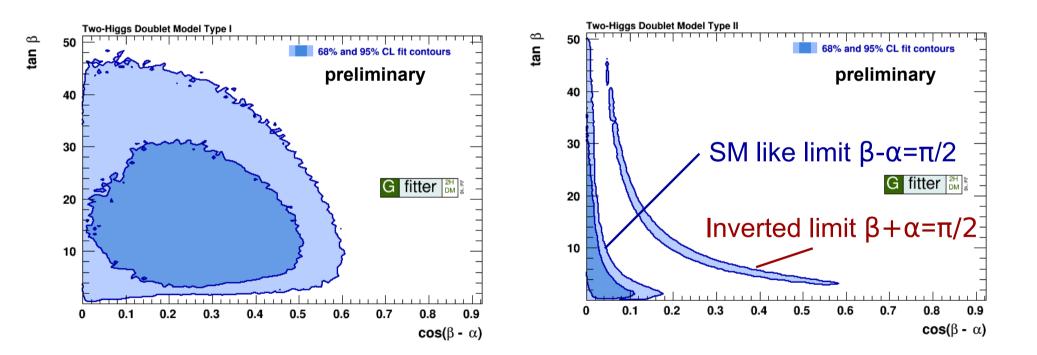
2HDM: Types


Four CP conserving types of the 2HDM with different Yukawa couplings:

- Type I:
 - Only one Higgs doublet couples to fermions
- Type II:
 - One Higgs couples to up-type quarks and leptons
 - Second Higgs couples to down-type quarks and leptons
- Lepton specific:
 - As type I model, but with leptons coupling to other Higgs doublet than the quarks
- Flipped:
 - As type II, but with couplings of up- and down-type exchanged

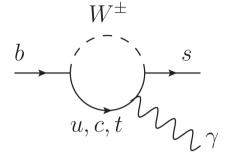
2HDM: EW Constraints G fitter

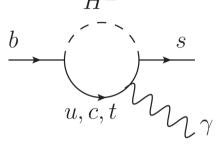
- Use STU formalism to constrain 2HDM
- Assume: discovered 125 GeV Higgs boson is light h_0
- Keep tan β and α free (not constraint by EW data)


Only weak constraints on mass ratios from electroweak data

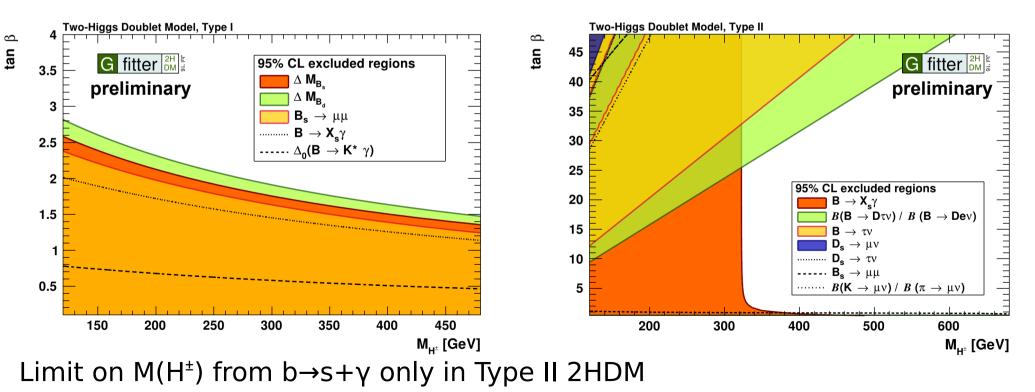
2HDM: Higgs BRs

- Measured Higgs branching ratios can constrain 2HDM
- Predictions for Higgs BRs from 2HDMC (D. Eriksson et al., CPC 181, 189 (2010))
- Importance sampling algorithm MultiNest (F. Feroz et al., arXiv:1306.2144) used to scan parameter space





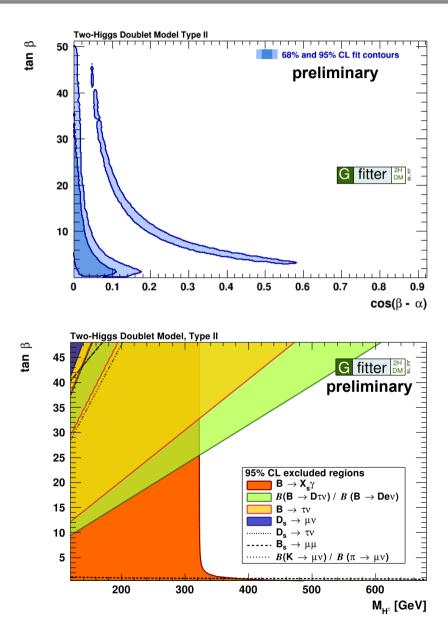
2HDM: Flavor


Flavor observables may be affected by charged Higgs contributions

F. Mahmoudi, CPC 180, 1579 (2009) M. Misiak et al., PRL 114, 221801 (2015) T. Hermann, M. Misiak, M. Steinhauser, JHEP 11, 036 (2012)

Requires precise theory predictions and CKM matrix elements (CKMfitter)

Electroweak Fits


Summary: 2HDM

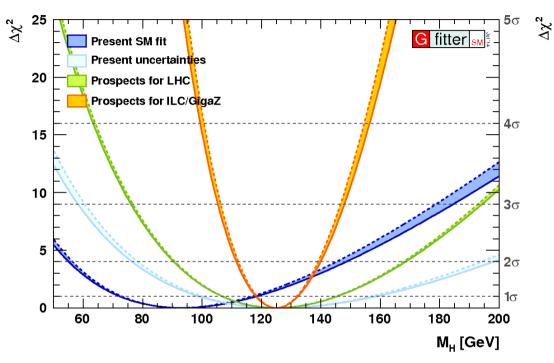
Two-Higgs-Doublet model constrained by:

- Electroweak precision data
- Higgs coupling measurements
- Flavor data

Combination of all available data allows to derive tight constrains on allowed parameter space

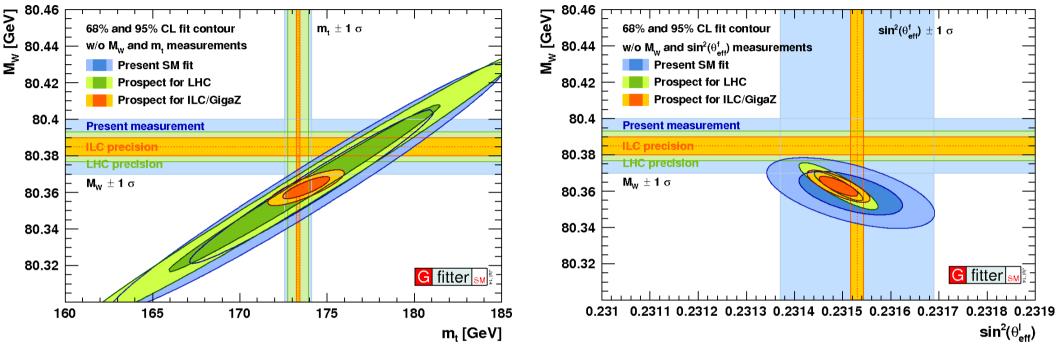
LHC and future electron colliders could improve EW measurements

- **Future LHC:**
 - Run 2 and 3 data •
 - 300 fb⁻¹ •
 - More precise t, H and W • masses
- ILC:
 - WW, tt threshold scans •
 - \rightarrow t and W masses with high precision
 - GigaZ: •
 - \rightarrow Z pole measurements
- Reduced theory uncertainties from 3-loop calculations


 \rightarrow assume $\delta_{\text{theo}}M_{W}$ and $\delta_{\text{theo}}\sin^{2}\Theta_{\text{eff}}^{f}$ reduced by factor 4-5

Parameter	Present	LHC	ILC/GigaZ
M_H [GeV]	0.2	< 0.1	< 0.1
M_W [MeV]	15	8	5
M_Z [MeV]	2.1	2.1	2.1
$m_t [{ m GeV}]$	0.8	0.6	0.1
$\sin^2 \theta_{ m eff}^\ell$ [10 ⁻⁵]	16	16	1.3
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [10^{-5}]$	10	4.7	4.7
$R_l^0 [10^{-3}]$	25	25	4

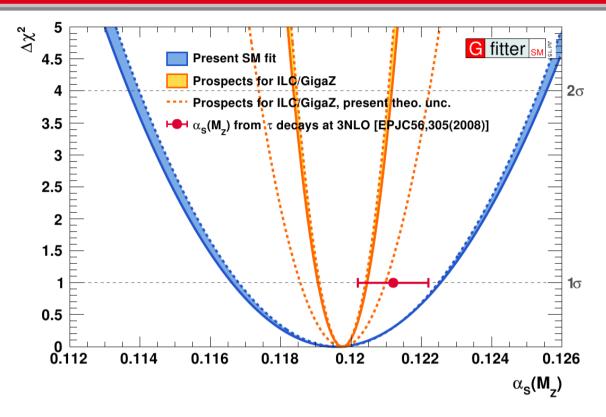
Future Masses



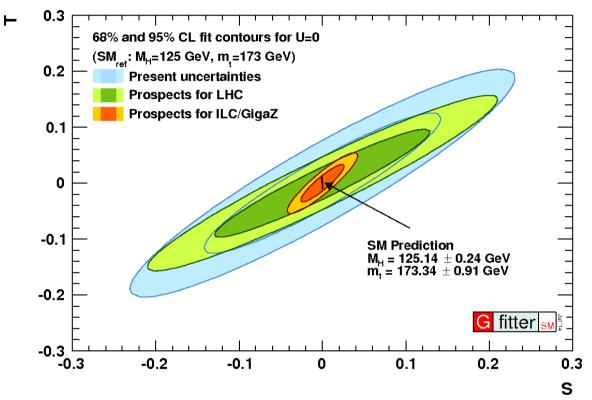
- 25 5σ G fitter Present SM fit Prospects for LHC 20 Prospects for ILC/GigaZ Direct measurement (present/LHC/ILC) 4σ 15 10 3σ 5 **2**σ 1σ 80.33 80.34 80.35 80.36 80.37 80.38 80.39 80.4 M_w [GeV]
- Central values adjusted to reproduce M_H =125 GeV
- Expected uncertainty of 7 GeV for ILC
- Indirect determination of M_H will not compete with direct measurement

- Expected uncertainty of direct and indirect M_w determination improved by factor ~3.
- For unchanged central values: 3σ discrepancy possible

Future 2D Scans


- m_t assumed to be measured with 0.1 GeV precision at ILC
- \bullet Indirect measurement of m_t with precision below 1 GeV reachable
- Improvements on m_t and $\Delta\alpha^{^{(5)}}{}_{had}$ could lead to improved determination of weak mixing angle by factor 3 already with more LHC data
- Direct measurement at ILC will gain more than factor 10 in precision

fitter


Better measurement of masses at ILC and reduced theory uncertainties might lead to uncertainty on α_s of:

$$\Delta \alpha_s = 0.00065_{\text{exp}} \oplus 0.00023_{\text{QCD}} \oplus 0.00025_{\text{EW}} \\ = 0.00070$$

Prospect for STU

- Central values adjusted to reproduce M_H =125 GeV for future scenarios, U=0
- Only minor improvement with expected LHC data
- Expected improvement of factor 3 to 4 at ILC

Electroweak Fits

Electroweak fit: combination of precision theory with precise measurements

- Probes SM at high precision
- Combination of EW and Higgs data can be used to constrain New Physics
- So far: consistency of all SM measurements

Outlook:

- LHC and future e⁺e⁻colliders could improve measurements
- Looking forward to new W mass measurements from LHC and Tevatron
- EW fit important to test SM with ultra-high precision in the future

BACKUP

Electroweak Fits

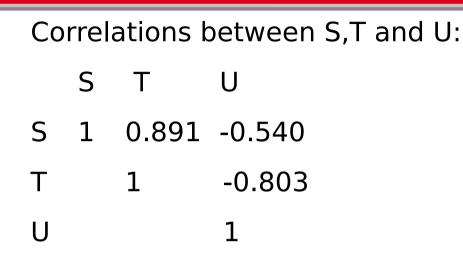
Fit Results

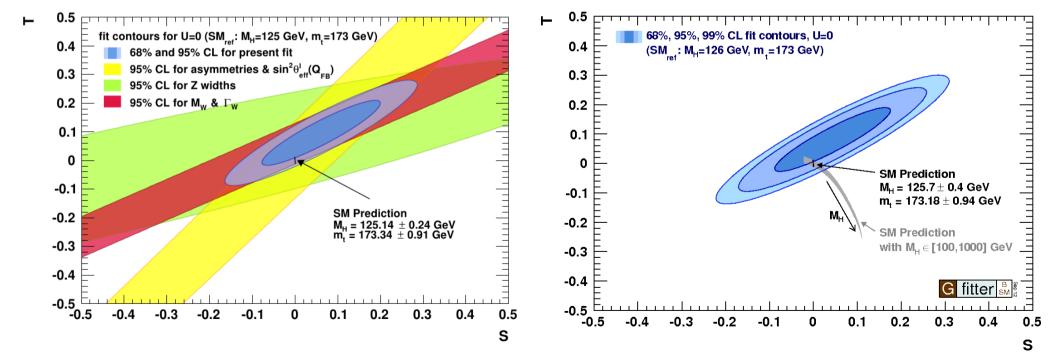
Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc	
$M_H \mathrm{[GeV]}^{(\mathrm{o})}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	93^{+24}_{-20}	
M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006	
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001	
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010	
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016	
$\sigma_{\mathtt{had}}^{0}$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015	
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026	
$egin{array}{l} R^0_\ell \ A^{0,\ell}_{ m FB} \end{array}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001	
$A_\ell (\star)$	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004	
$\sin^2 \theta_{\text{eff}}^{\ell}(Q_{\text{FB}})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005	
A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016	
A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002	
$A_{ m FB}^{0,\overline{b}}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003	
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006	
R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004	
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_	
\overline{m}_b [GeV]	$4.20 \substack{+0.17 \\ -0.07}$	yes	$4.20 \substack{+0.17 \\ -0.07}$	-	_	
m_t [GeV]	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(igsirp)}$	$177.0^{+2.3}_{-2.4}(\bigtriangledown)$	177.0 ± 2.3	
$\Delta lpha_{ m had}^{(5)} (M_Z^2)^{(\dagger riangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42	
$\alpha_s(M_Z^2)$	-	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028	

^(o)Average of the ATLAS and CMS measurements assuming no correlation of the systematic uncertainties.

^(*)Average of the LEP and SLD A_{ℓ} measurements, used as two measurements in the fit.

 (∇) The theoretical top mass uncertainty of 0.5 GeV is excluded.


^(†)In units of 10^{-5} .


 $^{(\triangle)}$ Rescaled due to α_s dependence.

2HDM Types

Parameterization for various 2HDMs (taken from arXiv:1106.0034)

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ^d_h	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
ξ_h^ℓ	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$-\sin lpha / \cos eta$	$\cos \alpha / \sin \beta$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	$\sin \alpha / \sin \beta$
ξ^d_H	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos lpha / \cos eta$	$\sin \alpha / \sin \beta$
ξ^u_A	\coteta	\coteta	\coteta	\coteta
ξ^d_A	$-\cot\beta$	aneta	$-\cot\beta$	an eta
ξ^{ℓ}_A	$-\coteta$	aneta	aneta	$-\cot\beta$

Future Colliders

					Experimental uncertainty source $[\pm 1\sigma]$					
Parameter	$\delta_{\rm meas}$	$\delta_{\rm fit}^{\rm tot}$	$\delta_{\rm fit}^{\rm theo}$	$\delta_{\rm fit}^{\rm exp}$	δM_W	δM_Z	δm_t	$\delta \sin^2 \! \theta^f_{\rm eff}$	$\delta\Delta\alpha_{\rm had}$	$\delta \alpha_s$
Present uncertainties										
M_H [GeV]	0.2	$^{+33}_{-27}$	$^{+10}_{-8}$	$^{+31}_{-26}$	$^{+28}_{-23}$	$^{+5}_{-4}$	$^{+10}_{-7}$	$^{+29}_{-23}$	$^{+7}_{-5}$	$^{+4}_{-3}$
M_W [MeV]	15	7.8	5.0	6.0	_	2.5	4.3	5.1	1.6	2.5
M_Z [MeV]	2.1	12.0	3.7	11.4	10.5	_	3.5	11.2	2.2	1.4
$m_t [{ m GeV}]$	0.8	2.5	0.6	2.4	2.3	0.4	_	2.3	0.5	0.6
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	6.6	4.9	4.5	3.7	1.2	2.0	_	3.4	1.2
$\Delta \alpha_{\rm had}$ $^{(\circ)}$	10	44	13	42	31	6	10	41	_	2
]	LHC pros	pects				
M_H [GeV]	< 0.1	$^{+21}_{-18}$	$^{+4}_{-3}$	$^{+20}_{-18}$	$^{+17}_{-14}$	$^{+6}_{-5}$	$^{+8}_{-7}$	$^{+18}_{-16}$	$^{+3}_{-2}$	$^{+5}_{-4}$
M_W [MeV]	8	5.5	1.8	5.2	_	2.5	3.5	4.8	0.8	2.6
M_Z [MeV]	2.1	7.2	1.4	7.0	6.0	_	2.8	5.9	0.8	1.9
$m_t [{ m GeV}]$	0.6	1.5	0.2	1.5	1.3	0.4	_	1.2	0.2	0.5
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	16	3.0	1.1	2.8	2.5	1.1	1.4	_	1.5	0.9
$\Delta \alpha_{\rm had}$ (°)	4.7	36	6	36	25	9	12	35	_	5
ILC/GigaZ prospects										
M_H [GeV]	< 0.1	$^{+7.3}_{-6.9}$	$^{+2.5}_{-2.4}$	$^{+6.8}_{-6.5}$	$^{+2.5}_{-3.6}$	$^{+4.3}_{-4.0}$	$^{+0.3}_{-0.2}$	$^{+3.4}_{-2.9}$	$^{+4.3}_{-4.0}$	$^{+0.3}_{-0.3}$
M_W [MeV]	5	2.3	1.3	1.9	_	1.7	0.1	1.2	0.6	0.3
M_Z [MeV]	2.1	2.7	1.0	2.5	2.4	_	0.1	1.3	1.9	0.2
$m_t [{ m GeV}]$	0.1	0.8	0.2	0.7	0.6	0.5	_	0.3	0.4	0.2
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	1.3	2.3	1.0	2.0	1.7	1.2	0.1	—	1.5	0.1
$\Delta \alpha_{\rm had}~^{\rm (\circ)}$	4.7	6.4	3.0	5.6	2.6	4.2	0.2	3.8	—	0.2

 $^{(\circ)} \mathrm{In}$ units of $10^{-5}.~^{(\star)} \mathrm{In}$ units of 10^{-4}