Introduction to Effective Field Theory

Sacha Davidson IN2P3/CNRS, France

1. Effective Field Theory

- what is it? (perturbation theory in scale ratios)
- *how* to implement in QFT (?loops with $p_{loop} \rightarrow \infty$)

(one of my all-time favourite papers)

Georgi, EFT, ARNPP 43(93) 209

to organise the SM/NP calculation, need: $\begin{cases} basis of d > 4 \text{ operators,} \\ recipe for changing scale \end{cases}$

• *why*: two perspectives: { top - down bottom - up

2. precision in EFT

- (SM interactions...controllable)
- NP : not know the couplings what to do? \Leftrightarrow (when) are dim 6 operators a good approximation to NP?
- 3. (and what about the Higgs?)

 $NP \equiv New Physics$, $\hat{s} = partonic centre-of-mass energy$, dim = dimension

What is EFT?

• there is interesting physics at all scales between "les deux infinis"

What is **EFT**?

- there is interesting physics at all scales between "les deux infinis"
- EFT = recipe to study observables at scale ℓ
 - 1. choose *appropriate* variables to describe *relevant* dynamics (*eg* use \vec{E} , \vec{B} and currents for radio waves, electrons and photons at LEP)
 - 2. Oth order interactions, by sending all parameters $\begin{cases} L \gg \ell & \to \infty \\ \delta \ll \ell & \to 0 \end{cases}$
 - 3. then perturb in ℓ/L and δ/ℓ

What is EFT?

- there is interesting physics at all scales between "les deux infinis"
- EFT = recipe to study observables at scale ℓ
 - 1. choose *appropriate* variables to describe *relevant* dynamics (*eg* use \vec{E} , \vec{B} and currents for radio waves, electrons and photons at LEP)
 - 2. Oth order interactions, by sending all parameters $\begin{cases} L \gg \ell & \to \infty \\ \delta \ll \ell & \to 0 \end{cases}$
 - 3. then perturb in ℓ/L and δ/ℓ

Example : leptogenesis in the early Universe of age τ_U ($\tau_U \sim 10^{-24}$ sec)

- * processes with $\tau_{int} \gg \tau_U$...neglect!
- * processes with $\tau_{int} \ll \tau_U$...assume in thermal equilibrium!
- \star processes with $au_{int} \sim au_U$...calculate this dynamics
- \star can then do pert. theory in slow interactions and departures from thermal equil.

$\mathit{Pre}\xspace$ -implementation of EFT in the SM , and for NP

- take scale to be energy E : GeV $\rightarrow \Lambda_{NP} (\gtrsim \text{few TeV})$ (then do pert. theory in E/M, m/E for $m \ll E \ll M$)
- ...ummm...in QFT are loops, $p_{loop} \rightarrow \infty$, $p_{loop} \gg M$?

$\mathit{Pre}\text{-}\textsc{implementation}$ of EFT in the SM , and for NP

- take scale to be energy E : GeV $\rightarrow \Lambda_{NP} (\gtrsim \text{few TeV})$ (then do pert. theory in E/M, m/Efor $m \ll E \ll M$)
- ...ummm...in QFT are loops, $p_{loop} \rightarrow \infty$, $p_{loop} \gg M$?
- theorists disturbed by loops:

 usually diverge on paper
 usually finite tiny effects in real world
 machinery to regularise (loop integrals) and renormalise (coupling constants)

$\mathit{Pre}\text{-}\textsc{implementation}$ of EFT in the SM , and for NP

- take scale to be energy E : GeV $\rightarrow \Lambda_{NP} (\gtrsim \text{few TeV})$ (then do pert. theory in E/M, m/E for $m \ll E \ll M$)
- ...ummm...in QFT are loops, $p_{loop} \rightarrow \infty$, $p_{loop} \gg M$?
- theorists disturbed by loops: $\begin{cases}
 usually diverge on paper \\
 usually finite tiny effects in real world \\
 \rightarrow machinery to regularize (loop integrals) and renormalize (coupling constants)$
 - \Rightarrow machinery to regularise (loop integrals) and renormalise (coupling constants)
- can extend regularisation/renormalisation to dim > 4 operators of EFT... ... but resulting EFT depends on details of how (eg put, or not, $M \gg E$ particles in loops?)
 - \star I use dim_{ensional} regularisation ; restricts/defines the EFT I construct.

$\mathit{Pre}\text{-}\textsc{implementation}$ of EFT in the SM , and for NP

- take scale to be energy E : GeV $\rightarrow \Lambda_{NP} (\gtrsim \text{few TeV})$ (then do pert. theory in E/M, m/E for $m \ll E \ll M$)
- ...ummm...in QFT are loops, $p_{loop} \rightarrow \infty$, $p_{loop} \gg M$?
- theorists disturbed by loops: { usually diverge on paper usually finite tiny effects in real world ⇒ machinery to regularise (loop integrals) and renormalise (coupling constants)
- can extend regularisation/renormalisation to dim > 4 operators of EFT... ... but resulting EFT depends on details of how (eg put, or not, $M \gg E$ particles in loops?)
 - \star I use dimensional regularisation ; restricts/defines the EFT I construct.

 \Rightarrow like in SM, EFT coupling constants (= operator coefficients) live in \mathcal{L} rather than real world, are *not* observables...

Can parametrise NP@LHC in S-matrix-based approach = "pseudo-observables" / (form factors), more general, less QFT-detail-dependent, more difficult?

1. choose energy scale E of interest

 $\Lambda_{NP} \gtrsim {\sf few} \; {\sf TeV}$

 $m_W \sim m_h \sim m_t$

 $GeV \sim m_c, m_b, m_{\tau}$

- 1. choose energy scale E of interest
- 2. include all particles with m < E

 $\Lambda_{NP} \stackrel{>}{_\sim} {\sf few ~ TeV}$

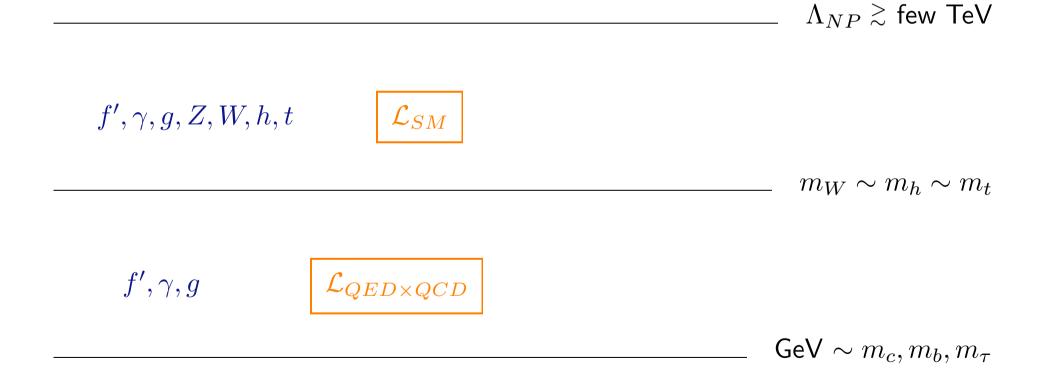
 $f', \gamma, g, Z, W, h, t$

 $m_W \sim m_h \sim m_t$

 f', γ, g

 $GeV \sim m_c, m_b, m_{\tau}$

- 1. choose energy scale E of interest
- 2. include all particles with m < E
- 3. 0^{th} order theory (renormalisable interactions) :send $\rightarrow \infty$ all $M \gg E$



- 1. choose energy scale E of interest
- 2. include all particles with m < E
- 3. 0^{th} order theory (renormalisable interactions) :send $\rightarrow \infty$ all $M \gg E$
- 4. perturb in E/M (and m/E): allow d > 4 local operators \Leftrightarrow exchange of $M \gg E$ particles

d counts field dims in interaction: $(\overline{\psi}\psi)(\overline{\psi}\psi) \leftrightarrow \dim 6$

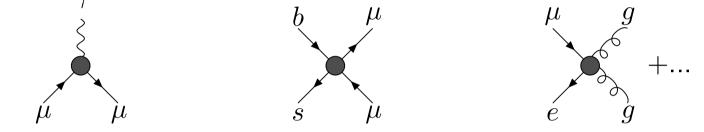
 $\Lambda_{NP} \stackrel{>}{_\sim} {\sf few} \; {\sf TeV}$

$$\begin{array}{ccc} f', \gamma, g, Z, W, h, t & \mathcal{L}_{SM} & +\mathcal{L}(\text{SM invar. operators}) \\ & & & \\ & & \\ f', \gamma, g & \mathcal{L}_{QED \times QCD} & +\mathcal{L}(\text{QCD * QED invar. ops}) \\ & &$$

at scale E, need a basis of operators, of dimension d > 4

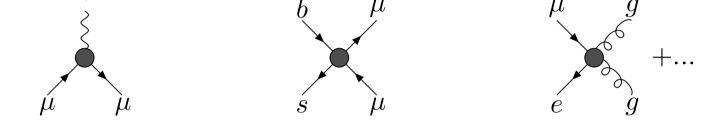
at scale E, need a basis of operators, of dimension d > 4

1. $E < m_W$: 3- and 4-point interactions of $f', \gamma, g \Leftrightarrow$ dimension 5,6,7 QCD*QEDinvariant operators: γ



at scale E, need a basis of operators, of dimension d > 4

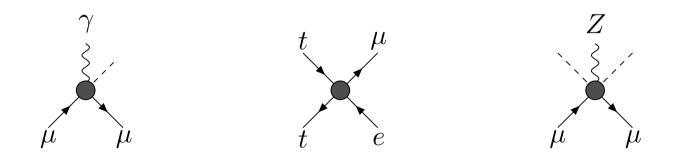
1. $E < m_W$: 3- and 4-point interactions of $f', \gamma, g \Leftrightarrow$ dimension 5,6,7 QCD*QEDinvariant operators: γ



2. $E > m_W$: dim 6 $SU(3) \times SU(2) \times U(1)$ -invar operators

BuchmullerWyler Grzakowski etal

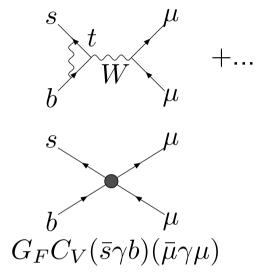
(neglect Majorana ν mass operators)



need a recipe to relate EFTs at different scales

1. when change EFTs (eg at m_W): match (= set equal) Greens functions in both EFTs at the matching scale

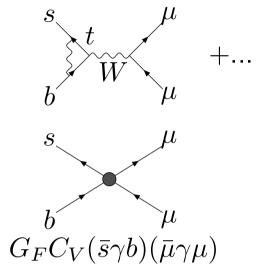
$$\Rightarrow C_V \sim \frac{V_{ts}}{16\pi^2}$$



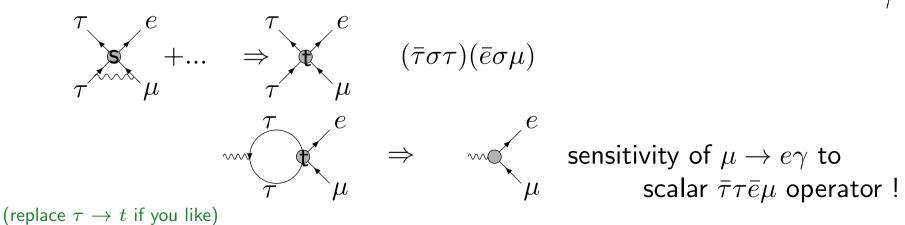
need a recipe to relate EFTs at different scales

1. when change EFTs (eg at m_W): match (= set equal) Greens functions in both EFTs at the matching scale

$$\Rightarrow C_V \sim \frac{V_{ts}}{16\pi^2}$$



2. Within an EFT: couplings (= operator coefficients) run and mix with scale. Can mix to other operators, (better?) constrained at other scales μ



Why do EFT: top-down vs bottom-up

Two perspectives in EFT: **top-down:** EFT as the simple way to get the right answer know the high-scale theory = can calculate the coefficients of dim > 4 operators (because know cplings \Leftrightarrow other perturbative expansions) recall: EFT is perturbative expansion in scale ratios ($eg \ m_B/m_W$) useful as simple way to get answer to desired accuracy (eg allows to resum QCD large logs)

Why do EFT: top-down vs bottom-up

Two perspectives in EFT: **top-down:** EFT as the simple way to get the right answer know the high-scale theory = can calculate the coefficients of dim > 4 operators (because know cplings \Leftrightarrow other perturbative expansions) recall: EFT is perturbative expansion in scale ratios ($eg \ m_B/m_W$) useful as simple way to get answer to desired accuracy (eg allows to resum QCD large logs)

bottom-up: EFT as a parametrisation of ignorance not know NP masses, or couplings = other perturbative expansions

 \Rightarrow use lowest order EFT expansion (in scale ratio m_{SM}/Λ_{NP}) to parametrise ... (?we hope??) many models

 \Rightarrow how well does bottom-up EFT work?

How precise is bottom-up EFT?

(top-down: just do perturbative expansion to sufficient order...)

- 1. How precisely are the SM dynamics included? (non-trivial problem: perturb in loops+ Yukawa+ gauge cplings $y_t^2/16\pi^2 \sim y_c^2$. In addition, matching at m_W delicate due to appearance of Higgs vev which changes operator dimensions)
- 2. How good a parametrisation of New Physics, is lowest order EFT (dim 6 operators)?

Suppose operator coefficient
$$\frac{C}{\Lambda_{NP}^2}$$
, detectable at scale \hat{s} if $> \frac{\epsilon}{\hat{s}}$

Suppose operator coefficient $\frac{C}{\Lambda_{NP}^2}$, detectable at scale \hat{s} if $> \frac{\epsilon}{\hat{s}}$ Also need $\Lambda_{NP}^2 > \hat{s}$, $C < 4\pi$. \Rightarrow can probe :

$$\frac{\epsilon}{\hat{s}} < \frac{C}{\Lambda_{NP}^2} < \frac{4\pi}{\hat{s}}$$

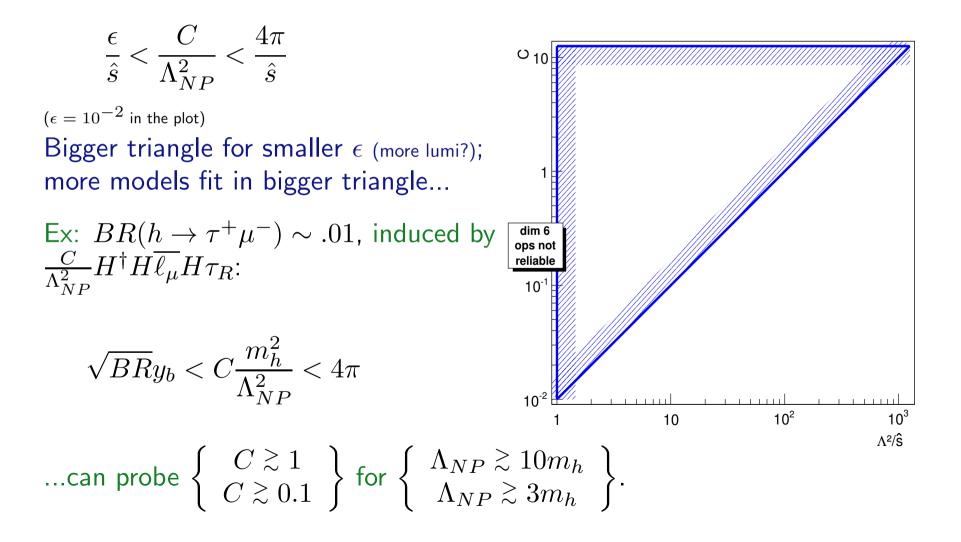
Suppose operator coefficient $\frac{C}{\Lambda_{NP}^2}$, detectable at scale \hat{s} if $> \frac{\epsilon}{\hat{s}}$ Also need $\Lambda_{NP}^2 > \hat{s}$, $C < 4\pi$. \Rightarrow can probe :

$$\frac{\epsilon}{\hat{s}} < \frac{C}{\Lambda_{NP}^2} < \frac{4\pi}{\hat{s}}$$

($\epsilon = 10^{-2}$ in the plot)
Bigger triangle for smaller ϵ (more lumi?);
more models fit in bigger triangle...

 10^{3} Λ^{2}/\hat{s}

Suppose operator coefficient $\frac{C}{\Lambda_{NP}^2}$, detectable at scale \hat{s} if $> \frac{\epsilon}{\hat{s}}$ Also need $\Lambda_{NP}^2 > \hat{s}$, $C < 4\pi$. \Rightarrow can probe :



n el

If a model induces dim-6 ops in that triangle, are they a good approx to the model?

? maybe ? I think no answer in EFT — depends on model

EFT is a perturbative expansion in scale ratios $(eg \ \hat{s}/\Lambda_{NP}^2)$...but measure $C_6 \frac{\hat{s}}{\Lambda_{NP}^2}$, C_6 unknown (model-dep) \Rightarrow size of $C_8 \frac{\hat{s}^2}{\Lambda_{NP}^4}$ model-dependent too ??

If a model induces dim-6 ops in that triangle, are they a good approx to the model?

? maybe ? I think no answer in EFT — depends on model

EFT is a perturbative expansion in scale ratios
$$(eg \ \hat{s}/\Lambda_{NP}^2)$$

...but measure $C_6 \frac{\hat{s}}{\Lambda_{NP}^2}$, C_6 unknown (model-dep)
 \Rightarrow size of $C_8 \frac{\hat{s}^2}{\Lambda_{NP}^4}$ model-dependent too ??

to get an idea if dim 6 ops are a good approximation:

1. Consider the formula for your favourite observable in your favourite model 2. expand in $\frac{1}{\Lambda_{NP}^2}$ 3. check if the $\mathcal{O}(\frac{1}{\Lambda_{NP}^2})$ terms are a good approximation?

Repeat many times.

Are lowest order operators a good approximation? (examples)

1. $gg \rightarrow h$ in the SM m_h^2/m_t^2 is not small... but the lowest order terms (infinite m_t limit) are an excellent approximation! Are lowest order operators a good approximation? (examples)

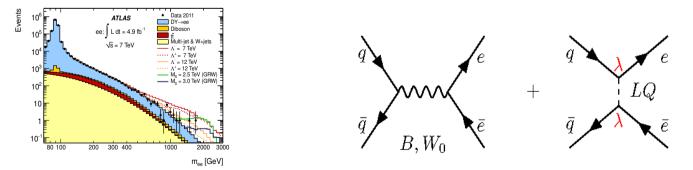
- 1. $gg \rightarrow h$ in the SM m_h^2/m_t^2 is not small... but the lowest order terms (infinite m_t limit) are an excellent approximation!
- 2. $h \rightarrow \tau^+ \mu^-$ and $\tau \rightarrow \mu \gamma$ in the 2HDM with LFV, decoupling limit. Matching 2HDM to dim-6 operators works fine for Higgs decay. But for $\tau \rightarrow \mu \gamma$: $\frac{\dim 8}{\dim 6} \sim \tan \beta \frac{v^2}{\Lambda_{NP}^2}$, $\frac{v^2}{\Lambda_{NP}^2} \ln^2 \left(\frac{v^2}{\Lambda_{NP}^2}\right)$ (ack: for $z = \frac{v^2}{\Lambda_{NP}^2} = .01, z \ln^2 z \simeq .2$)

Are lowest order operators a good approximation? (examples)

- 1. $gg \rightarrow h$ in the SM m_h^2/m_t^2 is not small... but the lowest order terms (infinite m_t limit) are an excellent approximation!
- 2. $h \rightarrow \tau^+ \mu^-$ and $\tau \rightarrow \mu \gamma$ in the 2HDM with LFV, decoupling limit. Matching 2HDM to dim-6 operators works fine for Higgs decay. But for $\tau \rightarrow \mu \gamma$:

$$\frac{\dim 8}{\dim 6} \sim \tan \beta \frac{v^2}{\Lambda_{NP}^2} , \quad \frac{v^2}{\Lambda_{NP}^2} \ln^2 \left(\frac{v^2}{\Lambda_{NP}^2} \right)$$
(ack: for $z = \frac{v^2}{\Lambda_{NP}^2} = .01, z \ln^2 z \simeq .2$)

3. high- \hat{s} tail $pp \to \ell^+ \ell^-$, mediated by a *t*-channel leptoquark with $m^2 \gtrsim \hat{s}_{max}$



dim-6 contact interaction=poor approximation (expected, $\hat{s} \approx \Lambda^2$ side of triangle) \Rightarrow more info in distribution tails than in published contact interaction bounds :(

On the interest of many searches for New Physics

- observables often depend on linear combinations of operators coefficients
- coefficients run and mix with scale
- $\Rightarrow need diverse observations to independently \left\{ \begin{array}{c} constrain all \\ determine non zero \end{array} \right\} coefficients$

ex: $h \rightarrow \mu e$

On the interest of many searches for New Physics

- observables often depend on linear combinations of operators coefficents
- coefficients run and mix with scale

 $\Rightarrow need diverse observations to independently \left\{ \begin{array}{c} constrain all \\ determine non - zero \end{array} \right\} c$

ex: $h \to \mu e$ At Λ_{NP} : \mathcal{L}_{SM} + $\frac{C_h}{\Lambda_{NP}^2} H^{\dagger} H \overline{\ell_{\mu}} H e$

$$+ \quad \frac{C_{meg}}{\Lambda_{NP}^2} \overline{\ell_{\mu}} H \sigma \cdot F e$$

On the interest of many searches for New Physics

- observables often depend on linear combinations of operators coefficents
- coefficients run and mix with scale
- $\Rightarrow need diverse observations to independently \left\{ \begin{array}{c} constrain all \\ determine non zero \end{array} \right\} coefficients$

At
$$\Lambda_{NP}$$
: \mathcal{L}_{SM} + $\frac{C_h}{\Lambda_{NP}^2} H^{\dagger} H \overline{\ell_{\mu}} H e$ + $\frac{C_{meg}}{\Lambda_{NP}^2} \overline{\ell_{\mu}} H \sigma \cdot F e$

At m_h : h decays to $\mu^{\pm} e^{\mp}$; current LHC sensitivity $\sim \frac{C_h v^2}{\Lambda_{NP}^2} \gtrsim 10^{-3}$.

At m_{μ} :

ex: $h \rightarrow \mu e$

$$BR(\mu \to e\gamma) \Rightarrow \left| \frac{e\alpha}{8\pi^3 Y_{\mu}} C_h + C_{meg} \right| \lesssim 10^{-8} \frac{\Lambda^2}{v^2} \quad , \quad \frac{e\alpha}{8\pi^3 Y_{\mu}} \sim 10^{-2}$$

 $\mu \to e\gamma$ sensitive to $C_h v^2 / \Lambda^2 \gtrsim 10^{-6}$...but if you admit cancellation up to one part per mil($\sim \alpha / (4\pi) \log$) between C_h and C_{meg} , LHC can see $h \to \mu^{\pm} e^{\mp}$ soon. $h \to \mu e$ at LHC *independent* constraint from $\mu \to e\gamma$:)

Summary

EFT is the way we do physics:

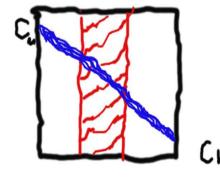
- 1. chose a scale E and relevant variables
- 2. perturb in scale ratios, eg E/M for $M \gg E$ works for β -decay, quark flavour physics, etc

At the LHC, use lowest order EFT (dimension 6 SM-gauge-invariant operators) from a "bottom-up" perspective, as a parametrisation of New Physics

If you know the high-scale theory (top-down perpective), the EFT expansion in scale ratios is a simple way to get the answer to the desired accuracy = precision can be estimated (just work to required order in all expansions)

precision harder to quantify "bottom-up": to determine whether dim 6 operators (within the blue triangle) are a good approx to NP at the LHC: does EFT reproduce your favourite model? (if not, explore your favourite model differently—simplified models, form factors, pseudo-observables etc)

there are many operator coefficients, want to know them all⇔ (almost) every independent measurement is interesting :)



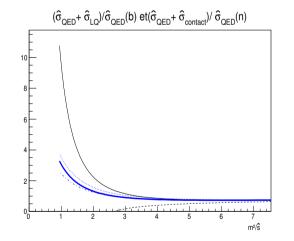
Looking for NP in the tails of distributions: leptoquarks and $pp \rightarrow \ell^+ \ell^-_{1307.5068 = \text{etal}+\text{ Santiago}}$

At 8 TeV LHC:

1. $m_{LQ} \gtrsim 800$ GeV bound on 1st generation LQ ($eg \ \overline{u_c}S_o e$), from absence of strong pair production.

2. Contact int. search in $pp \to e^+e^-$, with $\sqrt{\hat{s}_{max}} \lesssim 2$ TeV: $\Lambda_{CI} \gtrsim 10 - 20$ TeV. Can this bound be applied to *t*-channel leptoquark exchange?

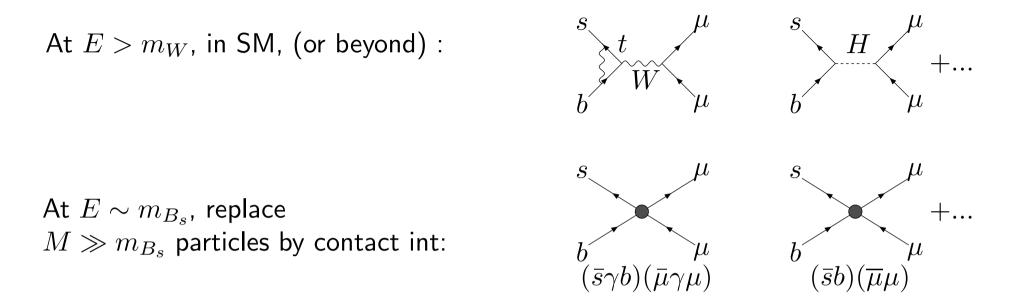
Not reliably for 800 GeV $< m_{LQ} < 4$ TeV ! Contact Int. poor approx to LQ exchange: $\star A_{SM} \sim A_{CI} \Rightarrow$ include $SM * CI + CI^2$ $\star t$ -channel: $\frac{1}{p^2 - m_{LQ}^2} \sim -\frac{1}{\hat{s} + m_{LQ}^2}$



1409.2772. 1410.4798

 \Rightarrow more info in distribution tails than in published contact interaction bounds :(distribution tails among the places where fitting to form factors/simplfied models/pseudo-observables = a better summary of the data ?

Example 2: "top-down" matching in $B_s \rightarrow \bar{\mu}\mu$



 $E \simeq m_B \sim 5$ GeV, 0^{th} order theory $= QCD \times QED$ for $\{q^i, \ell^i, \nu^i, \gamma, g\}$ include effects of W, Z, h, t as four-fermion operators:

$$\mathcal{L}(m_B) \supset \bar{b} \not D b + \dots - 2\sqrt{2}G_F \Big\{ C_V(\bar{s}\gamma b)(\bar{\mu}\gamma\mu) + C_S(\bar{s}b)(\bar{\mu}\mu) + \dots + h.c. \Big\}$$

Determine $C_V \sim \frac{V_{ts}}{16\pi^2}$, $C_S \sim \frac{\lambda_{bs}\lambda_{\mu\mu}^* v^2}{m_H^2}$ by equating Greens functions in both theories (at scale m_W , same QCD/QED loop order in both theories)